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Abstract

Speech and handwriting are manifestations of a common need for linguistic com-
munication. The similar nature of speech and handwriting recognition problems
suggests that a largely shared solution may be possible. Recent advances in speech
recognition can be partly attributed to changes in the research paradigm. These
changes include using large corpora of common training and testing data, adopting
statistical modeling over rule-based approaches, and ensuring meaningful comparisons
between candidate technologies. The resulting improvements in system performance
and robustness permit the study of increasingly difficult recognition tasks.

The primary goal of my thesis is to compare handwriting representations for on-
line, printed, alphanumeric character recognition without striving to construct the
highest-performance system. My studies are based on a carefully collected body of
data containing some 87,000 characters from 150 writers. Material was selected au-
tomatically to ensure compact coverage of significant letter sequences. Subjects were
instructed and prompted so as to minimally influence the writing they produced. A
time-aligned transcription was entered for all of this data. I conducted an authen-
tication study to understand better the classification difficulty of this writing. Only
81.7% of testing characters were identified correctly.

[ examined a number of potential representations for handwriting classification
including bitmaps, projections, transforms, chain codes, and point-sampling, paying
particular attention to pen motion as an information source. All experiments were
based on Gaussian mixture models because of their flexibility. The best representation
features Cartesian coordinates of 10 equally-spaced samples along the pen trajectory.
Without the benefit of relative size information, this representation resulted in 77.2%
correct character classification on testing data.

Finally, I adapted the SUMMIT segment-based speech recognition system developed
at MIT to handwriting. Segmentation is based primarily on pen-lifts, but strokes are
divided to account for connected character pairs. The parameter described above is
computed for each segment and the resulting graph passed to the recognition engine
for classification and search. This system was able to correctly recognize 65.1% of the
test-set characters. Incorporating a bigram character grammar with perplexity 11.3
improved this performance to 76.4%.

Thesis Supervisor: Dr. Victor W. Zue
Title: Senior Research Scientist






Extended Abstract

Speech and handwriting are manifestations of a common need for linguistic com-
munication. Both may be viewed as encoding linguistic information in a time varying
signal to ensure its transmission through a noisy channel. Both require the compo-
sition of fundamental units into endless combinations according to structural rules.
Both may benefit from modeling contextual, user, and environmental variations. Both
may be simplified by inherent as well as artificial constraints. The similar nature of
speech and handwriting recognition problems suggests that a largely shared solution
may be possible.

Spoken language is natural, pervasive, efficient, and can be used at a distance.
Written language does not have any of these properties, but unlike speech it can
be covert, incorporate positional and graphical information, and resist corruption by
acoustic noise. The natural advantages of these communication modes along with
their complementary characteristics suggest that both will be used in future human-
machine interfaces. In particular, both will have significant impact on computer
systems as they become smaller, more mobile, and more consumer-oriented.

Recent advances in speech recognition can be partly attributed to changes in the
research paradigm. These changes include using large corpora of common training and
testing data, adopting statistical modeling over rule-based approaches, and ensuring
meaningful comparisons between candidate technologies. The resulting improvements
in system performance and robustness permit the study of increasingly difficult recog-
nition tasks. Applying these paradigms to handwriting could yield similar gains.

In this thesis I address the problem of on-line printed character recognition for an
alphanumeric symbol set. Although it is generally assumed that the off-line recog-
nition problem subsumes on-line handwriting recognition, I wanted to investigate if
the temporal information available to on-line systems could be exploited to improve
performance. Furthermore, developing recognition technology for interactive systems
will require the study and modeling of writing phenomena that are not present in
off-line data. The alphanumeric symbol set selected is reasonably small, yet covers a
wide-range of task domains and provides an opportunity to observe highly confusable
glyph pairs.

The primary goal of my thesis is to compare handwriting representations for on-
line, printed, alphanumeric, character recognition without striving to construct the
highest-performance system. The key to such a project is a carefully crafted body of
data. The specification for data was primarily based on significant letter sequences,
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discovered automatically to limit the number of glyph contexts required. Words were
sclected using another automatic procedure to ensure a compact coverage of these
sequences. Subjects were instructed and prompted so as to minimally influence the
writing they produced. A total of approximately 87,000 characters were collected from
150 writers. Boxed characters were also collected from each subject for comparison
PUrposes.

A hand-checked, aligned transcription was produced for the writing data in this
corpus. The transcription conventions included symbols for connected characters,
minor noise such as spurious pen contacts, and major noise such as corrections and
doodles. At this point there is much that can be learned from the data. In particular,
I examined gross characteristics on a per-subject basis to assess subject’s compliance
with data collection instructions. For example, although subjects were instructed
to print their responses, 8.2% of the words contained at least one pair of connected
characters.

I divided the data by subject into training, development, and evaluation sets. In
order to understand better the classification difficulty of our task, I conducted an
authentication study using the development and evaluation data. The characters in
these subsets were shuffled and presented in isolation to one of three authenticators.
The authenticators were instructed to record labels for each token in preferential
order. Approximately 81.7% of the development data was identified correctly, with
roughly 6.1% of the responses an error in letter case only. Interestingly, subjects
were better able to identify characters written in strings compared to those written
in boxes.

Next, I examined a number of potential representations for handwriting classifi-
cation including bitmaps, projections, transforms, chain codes, and point sampling,
paying particular attention to the value of pen motion as an information source.
Handwriting representations can be divided into two classes: static representations
which are based on a pixmap and dynamic representations which are based directly
on the ink signal. It is difficult to ensure a fair comparison between these classes.
Accordingly, I investigated hybrid representations in which dynamic information is
quantized and represented within a pixmap. The representations explored include
bitmaps, projections, transforms, chain codes, and point-sampling. However, I es-
chewed rule-based feature extraction since such approaches have proved limiting in
speech recognition. All experiments were based on Gaussian mixture models because
of their flexibility. The best of the many representations and variations investigated
was based on the Cartesian coordinates of 10 equally spaced points along the pen
trajectory and correctly classified 77.2% of development-set characters. This result
is achieved without the use of preprocessing techniques and without the benefit of
relative size information.

The final area this thesis examined is the use of a segment-based recognizer for
handwriting. To do this I adapted the SUMMIT speech recognition system developed
at MIT. The handwriting segmentation was based primarily on stroke boundaries.
Rather than treating boundaries equally, I found that a simple classifier could cor-
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rectly identify inter-glyph boundaries 92.5% of the time. Strokes were also split to
account for connected characters. Parameters were computed for each segment, and
the resulting graph was passed to the recognition engine for classification and search.
Using the representation described above, the system was able to correctly recognize
65.1% of the development-set characters. Constraining the result using a bigram
character grammar with perplexity 11.3 improved this performance to 76.4%.

While this thesis is primarily about handwriting recognition, I believe that this
investigation will prove informative for speech recognition as well. By forcing systems
to perform tasks beyond their intended domain, by researching a different but related
realm, and by examining the process by which research is performed, one is required
to look at old issues from a new perspective.
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Chapter 1

Introduction

As computers become smaller, more powerful, and less expensive, human factors
play an increasingly important role in system development. The most visible aspects
of the computer are sure to undergo a radical change. For while machines are growing
ever smaller our fingers are not. The keyboard is already a limiting factor in computer
packaging. Does this mean we cannot progress any further?

The answer will come from the technologies of speech and handwriting recognition.
Recording speech or handwriting requires additional hardware, but the volume needed
for these transducers is small relative to the size of practical keyboards. At the same
time, speech and handwriting recognition will provide powerful new ways of using
computers. Both depend on forms of communication that are used by people daily
and are accessible to the majority of the population. Applications aimed at the
general population must be effective for the general population rather than only a
few technically sophisticated individuals. The same technology that will allow us to
make smaller, consumer-oriented computers will make it easier for customers to use
the products.

Speech and handwriting are manifestations of a common linguistic process. One
is based on a set of sounds, the other on a set of characters, but in both cases these
fundamental units are combined to form meaningful expressions. Since transmission
of the intended message is important, both have evolved guards against corruption
from noise. Yet both exhibit a high degree of variability stemming from a wide-range
of sources.

Despite their similarities, speech and handwriting are complementary in nature.
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Unlike handwriting, speech can be used to control a system without making contact
with it. However, handwriting is more effective at providing commands covertly.
Speech provides a natural and efficient means of supplying text, but handwriting
can embellish text with spatial and graphical information. Speech provides an ideal
means of communication when our hands are busy. Handwriting allows us to express
ourselves while we are listening.

The nature of a task may strongly favor one mode of interaction over the other,
but in general users will want to make a choice based on their immediate needs.
Moreover, users may take advantage of the synergy between speech and handwriting,
performing tasks more efficiently than they could with either mode alone.

If such systems are to become reality we must achieve a greater understanding of
the component technologies: We must learn how to extract the salient signal char-
acteristics. We must identify the sources and nature of the variability encountered.
We must understand the trade-offs involved in system development. And we must
characterize the errors and their effect on the user.

Within the past decade, advances in automatic speech recognition have reduced
word error rates to levels acceptable for practical technology deployment in a range of
applications. These improvements partly can be attributed to the research paradigm
adopted by speech scientists. A large corpus of data, collected from many speakers,
is divided into training and testing portions to prevent biasing the results in favor
of learned subject characteristics. The same data is used across all experiments so
that differing performance can be attributed to the procedures alone. While speech
knowledge is applied in the design of systems, statistical modeling ensures that inter-
nal parameters accurately reflect the data. This data-driven approach has resulted
in improved system performance and robustness despite increasingly difficult tasks.

In this thesis I hope to apply these techniques to handwriting recognition. My
goal is not to construct the best possible system for a real application. Instead,
[ strive for a meaningful comparison of representations within a reasonably useful
domain. In particular, I examine whether the temporal information present in on-
line handwriting data is a source of information or noise. By bridging the realms of
speech and handwriting recognition, I hope to stimulate ideas that will benefit both
fields.
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1.1 Handwriting Recognition Taxonomy

Automatic handwriting recognition is an extremely general term. The only key
requirements are that the data be produced by a person with a stylus and that
there is some higher level meaning to be extracted by a computer. In this section I
describe some of the important distinctions to be made in specializing the handwriting

recognition problem.

1.1.1 Data Dimensions

The most important distinction we can make is the manner in which handwriting
is captured for recognition. In off-line recognition, the writing is treated as an image
captured by a document scanner, video camera, or the like. This contrasts with
on-line recognition, in which the trajectory of a stylus is recorded while the user
writes. Since a static image is sufficient for reconstruction of the writer’s intent, it
is reasonable to question whether on-line data parameterization provides additional
information that can aid recognition or adds noise that hinders recognition. While
access to pen movement can elucidate overlapping strokes to reduce confusability, a
particular image can be produced with pen trajectories of varying direction, speed,
and acceleration, reducing data consistency.

Another important distinction is the domain of the written signal to be recognized.
Most commonly the concern is written text, and the task is to extract the underlying
linguistic intent. A similar area which has been reported on is the recognition of
shorthand notation [46]. Specialized forms of symbolic communication can be the
subject of handwriting recognition; there has been some interest in understanding
musical scores [69] and mathematical notation [10], both of which differ from text
in their dependence on 2-dimensional arrangement. The recognition task may be
pictorial rather than verbal. For example, systems have been constructed to produce
“clean” drawings from sketches drawn by the user [1].

While other areas have much potential, the focus of the remainder of our discus-
sion will be recognition of texts. Given this we must still narrow our distinction to a
particular language, class of languages, or writing system. Texts written in Japanese,
Arabic, and English have fundamentally different properties. Written language sym-
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Figure 1.1: Examples culled from the research corpus, illustrating various writing
styles. Strokes are demarked by varying intensities.

bols can correspond to words, syllables, or phonemes. The number of distinct symbols
can range from tens to thousands. Beyond a language’s alphabet we may need to en-
code symbols for digits, punctuation, and even editing gestures, and we may need to
encode variants of characters such as upper- and lower-case.

Let us further limit our discussion to written English. There are a number of
ways the same set of characters can be reproduced by a particular writer as shown
in Figure 1.1. Bozed writing is the most constrained, where subjects are required to
print each character in a separate box. This obviates the need to locate and separate
individual characters. Somewhat more relaxed is spaced writing where writers are
required to ensure that characters do not overlap. Further relaxed is run-on writing
in which we allow overlap. All of these styles require that each character is produced
discretely, i.c., the pen is lifted between characters. If we eliminate this constraint
we allow connected writing. This includes a printed style in which few characters are
connected and a cursive style which uses different character shapes and connects most
characters. Two additional distinctions which are fairly common are pure cursive,
which requires that all characters be connected, and mixed, which allows both printed
and cursive forms. This list is not exhaustive. For example, calligraphic forms are

sometimes used for formal documents.

1.1.2 Technology Dimensions

In describing handwriting recognizers we must also distinguish between different

recognition technologies.
22



08 | 27
019 | 292
il | el
727132521
2222232722
22022237

Other Subjects

Figure 1.2: Examples of the digit “2,” culled from the research corpus, illustrating
intra- and inter-writer variability.

The most important distinction is the form of enrollment users must make for
the system to perform as claimed. The most stringent systems are writer-dependent,
requiring a potential user to provide sufficient data for training. The amount of such
writing required may be substantial, but such systems can offer the best performance
by avoiding the need to capture inter-writer variability, demonstrated in Figure 1.2.
At the other extreme are writer-independent systems which require no enrollment
data. Such a system can be tuned to a particular writer during use, in which case it
is said to be writer-adaptive.

Another important distinction is the inventory of units modeled by the system.
We must first ask what aspect of the data is modeled. While it is natural to think
of classifying characters, there can be data sharing advantages to using a smaller
unit such as strokes. On the other hand, using larger units such as words can make
the distinctions between classes greater. Using larger models implicitly incorporates
contextual variation in the data. A system with contert-dependent models tries to
capture this variation directly. Details of the implementation, for example the clas-
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sification technique used and the parameters which control it, will also affect the
results observed. Some recognition strategics implicitly segment the input as a part
of recognition. In other systems the segmentation and classification are performed
independently. Algorithms for explicit segmentation can produce results with a wide-
range of branching factors, and this can impact the results greatly.

Finally, we must ask what higher-level constraints are imposed upon the recog-
nizer. A system may include no explicit language model, but typical modeling tech-
niques capture the a priori statistics of the training data. Explicit language modeling
is also used. A common approach is to restrict the output of the recognizer to words
appearing in a lexicon. This can work well for specific tasks with small vocabularies,
but it is difficult to construct a lexicon which covers general English text. A more
flexible approach is to use a character n-gram language model [33], estimating the
probability of n-character strings from data in a suitable text corpus. As we increase
n we expect this model to provide greater constraint, but the amount of data needed
to train the model increases dramatically. Tree-based grammars are also possible fo

provide structural constraints.

1.1.3 Summary

There are many factors which can influence the performance of handwriting recog-
nition systems. These include differences in the way handwriting is captured, how
the task is constrained, and what technology is used. Thus it is impossible to re-
duce our evaluation of a system’s performance to a single number. Rather, we must
understand what aspects of a handwriting system work well in the context of a par-
ticular application and ask ourselves how well such techniques can be applied to new

domains.

1.2 Previous Work

There is an extensive body of literature in the field of handwriting recognition.
In order to limit the scope of our discussion, I will concentrate on systems for En-
glish alphanumeric texts. It is important to note that substantial research in on-line
handwriting recognition has taken place in industry. This work is often considered
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proprietary and remains unpublished. Wherever possible I will quote performance in
terms of character accuracy. To avoid redundancy, descriptions of some papers will

be brief.

1.2.1 Survey Papers

An early survey of work in character recognition was written by Harmon [30] in
1972, but at that time on-line recognition was extremely rare. By 1980, Suen ct
al. [76] were able to report on over two dozen such systems.

Tappert et al. [79, 80, 82] have written comprehensive reviews of on-line hand-
writing recognition. They begin with the hardware requirements, basic handwriting
properties, and fundamental recognition problems. Next, they describe preprocess-
ing techniques for segmentation, noise reduction, and normalization. A number of
classification techniques are presented including decision trees based on features and
dynamic programming [64] to match shapes, but statistical methods are mentioned
only briefly. In discussing system performance, they note “it is difficult, if not impos-
sible, to compare” experimental results due to the differences in and vague documen-
tation of testing protocols. They cite human reading performance of 96.0 98.8%* for
isolated block characters but cover only two systems using an alphanumeric charac-
ter set. In addition, they describe a number of commercial technologies and discuss
future challenges for researchers.

Nouboud and Plamondon [58] survey on-line handprinted character recognition.
They describe dynamic programming as a common technology — it is found in 40% of
the systems reviewed — with syntactic methods as an alternative. When considering
the evaluation of recognition systems, they note that data collection procedures are
“quite unnatural” and that it is very difficult to compare the results from different
tests due to a lack of standardized benchmarks. While most character recognition
results reported are above 92% correct, they observe that the tests are often performed
on small data sets from few subjects, making the results less applicable to the general

population. Even for a system which they feel had been tested adequately, they found

!Speech recognition results today are usually given in terms of error rate, but I have adopted
accuracy since it is more common in the handwriting field. Either can be derived from the other.
However, reporting error rate helps make apparent performance gains when mistakes are rare.
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the claimed performance of 93.4% to be above their observed performance of 89.8%.
While it is not a survey paper per se, Wang and Gupta [85] describe several
approaches to handwriting recognition. They begin by examining fundamental prop-
erties of handwriting and give examples of the ambiguity encountered. They then
describe several syntactic and structural means of representing characters. No imple-
mentations of these schemes are presented; only a qualitative comparison is made.
Govindan and Shivaprasad [26] take a broader view and survey many forms of
character recognition. This paper is notable for its references to other survey papers
and its coverage of non-English character recognition. Wakahara et al. [84] examine

on-line recognition primarily for Japanese writing.

1.2.2 On-Line Handwriting Recognition

Early recognition systems were severely limited by the available computational
resources. Often these systems were deterministic in nature, incapable of providing
alternates should the most likely result be in error.

For example, Kurtzberg and Tappert [42] describe an approach for segmenting
discrete characters which may overlap. Their technique is based on comparing the
distance between pen strokes with thresholds to build segments. This yields a single
segmentation of the handwriting data. If this segmentation is wrong, it may be
difficult or impossible to correct the error at a later time. This problem is compounded
by the fact that the proper segmentation itself may be ambiguous without higher-level
knowledge.

One way to counter this difficulty is to enforce some form of separation between
characters. This separation nced not be spatial. Nouboud and Plamondon [59] de-
scribe a system which requires a brief pause between characters. After smoothing the
recorded pen trajectory, they construct a chain code [2] which includes quantized di-
rection and position information. These codes are compared using a string similarity
measure. In writer-dependent recognition of a 59-symbol task their system correctly
recognized 96.0% of the characters.

Ward and Blesser [88] describe some of the basic issues they encountered in the
deployment of an early commercial system for a discrete 95-character task. In a later

26



paper [87], Ward and Kuklinski give details of this system’s construction. Characters
are represented as a chain code of pen trajectory extrema. Base-forms are initialized
to cover potential allographic? variability, notably due to differences between North
American and Buropean styles. Additional base-forms are created to account for
differences in stroke order, shape, and direction. This results in an extremely large
number of variants, over 15,000 for an allograph of upper-case “A” alone. Input data
is compared against these models using syntactic pattern matching. Although the
evaluation of systems is discussed at length, no performance figures are given.

In order to create a handwriting recognition system, we must first understand what
distinguishes one character from another. Once we have obtained this knowledge it
1s tempting to encode it in the form of rules to be used for character recognition.

Kerrick and Bovik [37] describe a system for a 69-character alphabet written
discretely. Because efficiency is paramount for their application, they use a binary
decision tree to eliminate unnecessary parameter computation. The characters are
represented using local structural primitives such as “tees” along with more global
features such as stroke shape and aspect ratio. Thresholds are introduced to allow for
imperfect placement of the stylus in connecting strokes. The decision tree rules test
only for the presence of required properties. Candidate characters are then verified
against models. The authors do not describe any formal evaluation of their system,
but they do say it “has been demonstrated to be highly effective and efficient.”

Rather than segment the writing stream into characters, we might try to segment
and model an alternative set of basic units. Such an approach is described by Fu-
jisaki et al. [20, 21] in which strokes are classified according to their order within a
particular character. Thus, a vertical stroke might be labeled “1/4 of E” to indicate
that it is the first of four strokes within an “E.” Permissible paths are traversed and
potential characters are verified using template matching to discriminate between
cases which are identical at the stroke level. A character grammar provides further
constraints. This system achieved a character accuracy of 87.6% for an 82-symbol,
writer-dependent task. However, subjects for this study were coached to write simi-

larly shaped characters so that they were distinguishable.

2Allographs are symbols which differ in graphical form but are not linguistically distinctive. An
analogous concept defines allophones in spoken language.
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A comparison of stroke- and character-based techniques was conducted by Scho-
maker [67] for writer-dependent, lower-case cursive handwriting recognition. In both
cases a Kohonen feature map [39] was used for classification based on Cartesian
coordinates. His results suggest the stroke-based approach is superior. However, it
is not clear that the full potential of either method was realized because the search
space of results was pruned,® potentially discarding correct responses.

Unfortunately, our knowledge of a recognition task is often incomplete. Even when
we have great insight into the problem, it can be difficult to codify this knowledge so
that it is useful within a system. Statistical pattern recognition techniques hope to
circumvent these issues by modeling a set of training data and delaying decisions as
late as possible in the recognition process. This allows the most amount of information
to be used in reaching the decision. We depend on poor classification scores for non-
character segments to eliminate incorrect paths.

Two approaches to stochastic segmentation are compared by Schenkel et al. [66]
for handprinted words composed of capital letters. In their first experiment, strokes
are combined into hypothesized segments based on simple heuristics. Although this
approach requires pen-lifts between characters, it was noted that “very few people
did not separate their characters” in this manner. Their second experiment avoids
this constraint by advancing a fixed-size window along the input to produce the
segmentation. In both cases a time-delay neural network (TDNN) was used to classify
the segments, and the resulting graph was searched for the best response using the
Viterbi algorithm [18]. The two approaches resulted in character recognition rates of
92% and 89% respectively. The performance of the better system could be increased
to 95% by constraining the result to an 80,000-word lexicon. It is worth noting that
the authors report the error rate was reduced “by more than a factor of two” by
training the classifier to identify non-character segments as such. In a similar system
for boxed data, Guyon [29] reported classification rates of 96.2% for upper-case letters.

Hidden Markov models [61] (HMM) are a popular stochastic modeling technique.
For example, Bellegarda et al. [4, 56] describe an HMM-based system for an 81-symbol

discrete character task. In their system, the input stream is resampled at equally

3Pruning may be needed to limit the computation and memory requirements of a deployed system,
but for research purposes it is an additional source of error to be characterized.

28



spaced points and frames are constructed to include slope and curvature information
from multiple points. These frames are fed through Gaussian-mixture models and the
resulting feature vectors are used to train a one-state HMM for each character. This
system results in character recognition rates of 86.6% in a writer-dependent mode
and 80.9% in a writer-independent mode. Both of these results compare favorably to
a template-based approach used in the IBM ThinkPad product.

Stochastic segmentation and modeling have been applied to cursive writing recog-
nition as well. Nag et al. [55] described a small vocabulary HMM system in 1986. A
more recent application of these techniques is described by Makhoul et al. [48, 73] for
an 86-character task. A feature vector was constructed for each sample in the input to
represent movement of the pen. These were fed into a vector quantizer and the results
used to train the HMM'’s with linear topology. The system was trained and tested
on sentences from six subjects. On average, this writer-dependent system correctly
recognized 95.9% of the words, with an estimated 98.6% correct character accuracy.
However, to achieve this level of performance the recognizer was constrained using a
bigram language model covering approximately 25,000 words.

Manke and Bodenhausen [49] apply a TDNN to writer-dependent cursive lower-
case letters. The system is trained on feature vectors which attempt to capture both
static and dynamic information. Dynamic time warping is applied to the outputs of
the network to match word models. On a 20,000 word task, this system achieved
a word recognition rate of 83.0%. When applied to a writer-independent, isolated
character task, the system correctly recognized 91.5% of lower-case letters.

Schenkel et al. [65] combine a TDNN for feature vector classification with an
HMM for the search to recognize writer-independent lower-case words. The TDNN
input window approximates the width of a single character and it has an output for
each symbol of the alphabet. These outputs are used as the observation vector of
an HMM. A fast-match procedure reduces the computational requirements of the
system. When tested on words written by 25 subjects, the authors report a 71.8%
character accuracy. This result improves to 89.1% when a 25,000-word lexicon is used
to limit the results.

In order for statistical modeling to be effective, sufficient training data must be
available so that pertinent variations can be observed. Kuklinski [41] and Wing [90]
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describe some of the factors introducing this variability. One way to reduce the
amount of training data needed is to normalize the data. Guerfali and Plamondon [27]
outline a number of ways this can be done for on-line handwriting. They discuss
techniques for noise reduction (to smooth the writing), baseline correction (to orient
the writing horizontally), deskewing (to normalize the characters’ slant), and zone
detection (to determine character height). These techniques were not evaluated in
the context of a recognition system, but they were judged by a panel of subjects to

be generally effective.

As we have seen, recognition systems can be constructed from many potential
representations, models, and algorithms. Although high accuracy is an often sought
goal, the highest accuracy may make unrealistic demands on memory, computation,
and application constraints. A research system must be carefully pared to reduce

these requirements while maintaining a high performance level.

Tappert [78] examines some of the trade-offs possible for an on-line boxed char-
acter recognizer. He first notes that by adopting an improved representation and
distance metric the character error rate of the system was halved, raising the perfor-
mance to 97.3% on writer-dependent data. Part of the testing material was used to
develop these improvements. A “significant” part of the improvement was due to the
elimination of a parameter which could be construed as noise. Tappert then reduces
the computational requirements of the system by simplifying the preprocessing, using
more restricted models, and pruning the search space. These techniques increased the

speed of the system by an order of magnitude with negligible effect on accuracy.

We must remember that the requirements for any recognition system are ulti-
mately driven by the application and its users. For example, while real-time recogni-
tion performance is required in some instances, there may be situations where selecting
a slower yet higher-accuracy system is more prudent. Similarly, an extremely fast but
low-accuracy system may be perfectly acceptable if the domain can be constrained
sufficiently. Thus there is not necessarily a single, best approach to handwriting
recognition.
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1.2.3 Off-Line Handwriting Recognition

Many of the issues surrounding off-line handwriting recognition are applicable
to the on-line problem. It is simple to treat dynamic pen data as static by scan
conversion. The resulting data should be easier to recognize than scanned images
due to the lack of visual noise and pen-width variability. Conversely, it is possible to
treat image data as if it were collected on-line by inferring the dynamic information.
Suen et al. [75] present a good overview of recent advances in off-line handwriting
recognition.

Before video display terminals became commonplace, a popular application for
recognizing handprint was to replace keypunching for FORTRAN programs. More
recently a driving task has been locating and recognizing routing information from
handwritten addresses. Srihari [71] illustrates many of the issues within this do-
main. Because of their keen interest in this problem, the U.S. Postal Service has
funded large common corpora of digits for training and evaluating postal address
processing systems. The U.S. Census Bureau is also extremely interested in off-line
handwriting recognition and has collected a corpus of alphanumeric data which has
been distributed widely. An overview of off-line corpus development issues is pre-
sented by Hull and Fenrich [31], including descriptions of some existing character
image resources.

Srihari [72] gives a summary of performance for digit recognizers for the zip code
task. The high degree of accuracy required necessitates the incorporation of rejection
criteria. However, varying rejection sensitivity makes it more difficult to compare
systems. For example, Nadal et al. [54] describe a recognizer for zip codes which
independently classifies the character’s skeleton and contour. The outputs of these
algorithms are combined using a decision rule to produce a character accuracy of
84.9%. The remaining 15.1% of the data was rejected. Suen et al. [77] update
this system to use two additional independent classifiers. The new system correctly
recognizes 93.1% of the characters while rejecting the remaining 6.9%.

Confidence in automatic recognition systems can be greatly enhanced if redundant
information can be applied to verify results. For example, a check digit can reduce
the probability of misrecognizing a number string. Zip codes do not incorporate such
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a feature, but redundant information is available from other parts of the address,
particularly the city and state. Chen et al. [6] created an HMM-based system to
recognize city names scanned from real envelopes. When constrained by a 271-word
lexicon, the system achieved a 72.3% word accuracy. Identifying the components
of an address is itself a difficult task. Cohen et al. [8] describe how the underlying
structure can be extracted. An important component of this is locating the breaks
between words or other syntactic elements.

There are other popular applications for off-line handwriting recognition. For
example, Di Zenzo et al. [9] examine the problem of recognizing characters at any
orientation and size as extracted from maps. Gupta et al. [28] consider recognizing
currency values scanned from bank checks.

Another noteworthy paper, written by Smith et al. [70], studies digit classifier
performance as a function of the training data used. They also compare k-nearest
neighbor classifiers [13] using several different distance metrics. The authors report
that an order of magnitude increase in training data results in a decrease in error “by

’

half or more.” Just over 60% character accuracy was possible using only a single,

randomly selected prototype per digit.

1.2.4 Related Fields

There are a number of other fields which can provide information useful to hand-
writing recognition. In this section I list a few papers of note.

Optical character recognition (OCR) is similar to off-line handwriting recognition
although its concern is machine printed texts. Pavlidis [60] gives a brief but practical
overview of the field. In particular, he notes five sources of errors: shape similarity,
print quality, digitization distortion, feature detection, and classifier design. Mori
et al. [53] trace the development of OCR and off-line handwriting recognition sys-
tems including descriptions of common processing techniques. Impedovo et al. [32]
concentrate on the capabilities of commercial systems.

Speech recognition is perhaps the field most similar to on-line handwriting recog-
nition. Rabiner and Juang [62] provide an introduction to the modern practice of
speech recognition.
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We can also learn from studies of human production and recognition of hand-
writing. Suen [74] surveys these fields and describes a number of experiments. He
notes “solid evidence” demonstrating that printing is more legible than cursive writ-
ing. Although cursive writing is shown to be somewhat faster than printing, at least
one study suggests that the two forms of writing are equally efficient with sufficient
practice. In a study of human classification covering 26 printed letters, subjects were
able to correctly identify 97.6% of the characters. Schoonard et al. [68] analyze data
collected from individual subjects’ handwriting and survey their attitudes toward a
recognition system. Then they compare the performance of their system to that of
humans reading the same data.

Human factors are an important aspect of application design. As such they affect
the requirements made of a recognition system. Gould and Alfaro [25] compare a
traditional text editor with handwriting and speech recognition for the purposes of
document revising and found handwriting to provide the preferred interface. Wolf [91]
examines the user’s explanation of recognition errors.

It is important to understand how the transducer affects the handwriting recorded.
Ward and Phillips [89] provide a comprehensive review of digitizer technology and
performance with an eye toward how this affects handwritten text. In a sidepiece to
the article, they note that difficulties in using existing digitizer technology motivated
them to produce their own hardware. Meeks and Kuklinski [51] compare the dynamic
characteristics of digitizers.

Finally, in 1977 Kay and Goldberg [36] outlined the capabilities of a prototype
computer system, the Dynabook. While this system did not incorporate handwriting

recognition, many of the ideas expressed in this paper are worth revisiting.

1.2.5 Summary

Handwriting recognition has a history that stretches nearly to the start of elec-
tronic computing. Recently, one can observe newfound interest in the field, instigated
by new applications on faster computers with practical transducers and encouraged
by speech recognition successes.

Despite a rich array of approaches, research progress is hindered because it is
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difficult to evaluate on-line technologies against one another given the information in
the literature. Systems are trained and tested on corpora of varying difficulty. In some
cases, the same data serves as both the training and testing material, yielding results
which may not generalize to additional writing. Often evaluations take place on only
a small amount of handwriting from a few subjects who are not representative of the
general population. Writers may be instructed to make their writing more consistent.
Potentially troublesome data may be discarded due to overly strict subject compliance
criteria, yielding falsely optimistic results. Data processing may include steps of
questionable value, yet their effects on the results is rarely isolated. Even result
reporting can be suspect, obscuring the facts by excluding automatically rejected
material or including answers other than the best.

If we are to integrate handwriting and speech recognition technologies, we need to
begin addressing these problems. We must have an understanding of what works and,
more importantly, the nature of the errors with which we must contend. Systems must
be compared using common training and testing sets. The data should include a large
amount of handwriting from as many subjects as possible, collected under the most
natural conditions as is practical. Little if any data should be excluded from study,
and only then because it strays beyond a well-defined scope. Individual algorithmic
differences should be isolated to properly attribute performance gains determined in
a straightforward manner by identical metrics. These are all techniques now common

in the speech recognition field.

1.3 Thesis Scope

The primary goal of my thesis is to demonstrate how speech recognition research
techniques can be applied to handwriting recognition, seeking a fair comparison of
algorithms to advance our understanding of relative efficacy. In particular, I hope to
determine better the value of dynamic information. In all cases I stress simplicity and
reproducibility so that my results can be used as a starting point for further studies.

It is impossible to examine all aspects of handwriting recognition within the
bounds of this work. I have limited my thesis to on-line handwriting recognition
bcéause my ultimate interest is in systems that interact through both speech and

34



handwriting. I selected a 62-symbol vocabulary consisting of upper-case letters,
lower-case letters, and digits. This domain is capable of supporting a wide-range
of applications and includes several highly confusable pairs, but avoids punctuation
and symbols whose intrinsic properties may be quite different from alphanumerics.
Although the structuring of handwriting into words, lines, and larger blocks is an
important component of many applications, such work is beyond the scope of this
study.

I have chosen to examine handprinted characters because they are often requested
when clarity is required. Recognizers will be most acceptable to the broadest popula-
tion when they impose the fewest constraints on writing style. Accordingly, I have not
restricted character size, orientation, shape, overlap, or connection, provided the basic
requirement of natural printing is met. Because no suitable corpora were available, I
have collected and transcribed data from a relatively large number of writers.

The capabilities of the classifier used within a recognition system can greatly
influence the selection of features to be extracted. I have favored comparing repre-
sentations over comparing classifiers, but this requires ensuring that the classification
procedure is sufficiently flexible. All of my studies are based on Gaussian mixture
modeling [50], a technique proven to work well for speech recognition. I examined
static representations, based on an image of each character, and dynamic representa-
tions, based on the pen’s trajectory. Experiments I performed on human classification
of the data provide a baseline for my evaluation.

The complete recognition system is built around the classification and search
components of the SUMMIT [93] speech recognizer developed at MIT. Unlike most
speech recognizers, this system is segment based. The segmentation may provide
multiple paths to be selected from in the search phase. I take advantage of this fact
by hypothesizing many potential segmentation points. The explicit segmentation
allows me to examine a wider range of representations.

In the remainder of my thesis I describe and discuss the studies I have performed.
In Chapter 2 I describe the design, collection, and transcription of a relatively large
handwriting corpus. I have approached cach of these steps with a degree of care
common in speech studies, but more rare in the handwriting field. In Chapter 3 I
discuss a selection of handwriting representations and compare their usefulness for
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character classification. To better understand the difficulty of this task, I review an
authentication study that establishes human character classification accuracy on the
identical data. In Chapter 4 I develop an automatic segmentation algorithm and
incorporate it in a handwriting recognition system. I also touch upon constraining
the results with a character bigram grammar. Finally, in Chapter 5 [ summarize what

I have learned and consider some possible extensions to this work.
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Chapter 2

Data Collection and Preparation

A critical aspect of any classification or recognition study is the data examined.
In this chapter I describe the handwriting corpus used for my experiments. I discuss
how I designed the corpus to ensure its efficiency and collected the data to minimize
unwanted influences. I present the conventions used in transcribing the data and
enumerate basic properties of these transcriptions. Finally, I list the criteria applied

to identify and thereby eliminate data unsuitable for my studies.

2.1 Data Collection Issues

The data corpus serves two primary purposes with respect to classification and
recognition experiments. First, it must provide sufficient examples of each class so
that regularities and variability may be characterized. Second, it must offer am-
ple opportunity for evaluating a system in a meaningful manner. It is difficult, if not
impossible, to ensure that these goals are met in general. Our knowledge of handwrit-
ing production is at best incomplete, making it troublesome to predict the conditions
required to evoke particular variants. As an alternative, we should work towards un-
derstanding the sources and nature of variability that we observe. By understanding
the influences on our data we can qualify the relevance of our results.

As a practical matter, the overriding factor affecting the data corpus will be
its cost. No project has unlimited resources, and thesis projects are particularly
constrained. The collection and preparation of data can have a relatively high cost,
limiting the size of the corpus. This, in turn, limits the variability that can be
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observed. Thus we must be selective in the corpus design to manage the variability

covered.

2.1.1 Task-Related Variability

One can imagine a generalized handwriting recognition system which works well
for the entire population using a variety of hardware platforms to accomplish many
different tasks. Such a system is difficult to construct, in part because the data
variability is so great. In addition, more specific systems should be able to provide
higher recognition accuracies by taking advantage of the inherent constraints of a
particular task.

The most natural way to ensure that data collection closely matches the target
task is to record handwriting within a prototype application. This guarantees that
major handwriting influences reproduce the deployment conditions without requiring
an explicit accounting. However, it may not be practical to develop a fully functional
prototype in time for recording subjects. In lieu of this a simulated application,
perhaps using a human to perform recognition, can be used. Such forms of data
collection are sure to capture spontaneous writing events which would not otherwise
be observed. While this is important in the development of real-world systems, it
is a source of variability which may be controlled through scripting the responses of
subjects. The nature of these responses will affect variability caused by coarticulation,
the influence of a character on its neighbors. For the lowest level of coarticulation,
one might ask the subjects to write individual letters in alphabetical order. Changing
the order requested from each subject would result in greater variability. Recording
strings of characters should provide greater variability still.

The writing style permitted is another major source of variability. In the least
restrictive cases one would simply instruct subjects to write their responses. As a
result, a range of writing styles might be observed. Alternatively, one can request that
the subject use a particular style such as fully connected script or handprint. Within
a particular writing style many symbol styles or allographs are possible. European
forms may differ from North American, as shown in Figure 2.1 for the letter “z.”
Small capitals may be favored over true lower-case shapes. Some characters, such as
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T2 222010

Figure 2.1: Two allographs of lower-case “z” found in the research corpus.

the asterisk, are less standardized than others. Restricting the symbol set will reduce
the variability observed. One can further limit the writing style and character shapes

by instructing subjects as to what is sought and correcting their practice.

2.1.2 Subject-Related Variability

Subjects themselves are a major source of handwriting variability. All such factors
may be obviated by constructing writer-dependent systems. The danger then is that
the within-subject variability may be better modeled for some individuals. Were
systems to be developed using data from too few subjects, we could obtain a false
impression of system performance. Considering handwriting recognition for consumer
products, writer-dependent technology is reasonable for devices which are personal.
In fact, the user may be well-motivated to train the system to obtain the highest
recognition accuracy. However, it may still be desirable for these systems to work
reasonably well directly after purchase and without enrollment.

Writing is a learned skill which is taught using many techniques. Over time
different approaches have been favored in different locales. Thus a subject’s age and
place of schooling have an indirect effect on their writing.

A more natural influence is the hand favored by the subject. Left-handed writers
may adopt a style to minimize ink smearing. This can result in differences in pen
grip, character shape, and stroke direction. More subtle psychological factors may
play a role as well. It is important to remember that at times, in many cultures,
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favoring the left hand was undesirable or unacceptable and children were forced to
switch to their right hands. This is another way a subject’s age and upbringing can
engender differences in handwriting.

Gender is an influential factor in speech variability. Part of this may be attributed
to physiological differences. However, it appears that learned traits are also at work.
Similar differences may apply to handwriting. Anecdotally, I have observed that at
least some handwriting may be characterized as masculine or feminine. Although I
am unaware of any studies trying to quantify these differences, it is an influence that
can be easily controlled for in data collection.

Other subject-related factors influence the handwriting recorded. Some subjects
may strongly favor a particular writing style and find it difficult or impossible to
write any other way. Subjects in certain professions may be trained to write using
particular conventions. As subjects age their motor control may degrade and with it
their writing. Even factors that vary in the short term, such as fatigue, will influence
the data collected.

The possible combinations of these factors suggest that, as a minimum require-
ment, data should be collected from a large number of subjects. If the amount of
data in a handwriting corpus is fixed, there is a fundamental trade-off between the

number of subjects recorded and the amount of handwriting from each subject.

2.1.3 Methodology-Related Variability

The experimental procedures themselves will also influence the data collected.
This is not necessarily bad, but one must take care to avoid unwanted influences.

I have already mentioned that the subjects may be instructed to produce writ-
ing of a particular style. The instructions can influence the subject in other ways.
For example, a subject may write differently depending on whether the instructions
indicate that legibility is sought. Rewards can further reinforce a desired behavior.

The area used to collect writing can greatly influence the results. Too small an
area can result in cramped and illegible writing. Larger areas may result in a wide
variety of character sizes, particularly if some subjects believe they must fill the space
provided. This can be controlled using writing guides such as lines within the input
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area, but this will also influence the location and slant of character baselines.

For scripted data collection, the manner in which prompts are presented will affect
the handwriting process. Writing uses the vision system to provide feedback during
production. Visual prompting for data requires that the subject shift their focus from
the prompt to the writing arca, perhaps repeatedly. The effects of such a “copying”
task have not been studied formally and may be subtle. I have observed that even
the font used for prompting can alter the letterforms produced. This influence, in
particular for dollar signs, has been observed at another site [63]. Visual prompting

could inadvertently limit the variability of character shape and size.

The nature of the writing surface and stylus, as well as the digitizing technology,
will affect handwriting production. Some of these effects have been studied by Tap-
pert ct al. [81]. For example, the angle between the stylus and the writing surface
can influence the position sensed when using some transducers. The stylus may be
unusually bulky, altering the subject’s grip. A stylus tethered to the tablet may have
a mass distribution quite different from a cordless device. The writing surface and
stylus tip, particularly for tablets with integrated displays, may produce a “feeling”
different from paper and pen. Even the speed and accuracy of inking feedback will

alter the subject’s handwriting.

The procedural influences on handwriting data collection are numerous and wide-
ranging. Care is required to design and collect a handwriting corpus to ensure maxi-

mum utility of the data.

2.1.4 Summary

There are numerous sources of handwriting variability, including those related to
the task performed, the subjects recorded, and the experimental methodology. Cap-
turing this variability can require recording a large amount of data, yet we are bound
by time and budget. In collecting data we must try to exclude those sources of vari-
ability which are irrelevant to our experiments while recording as much handwriting
as practical, keeping in mind the intended application.
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2.2 Corpus Design Overview

I decided to collect a handwriting corpus because I could not identify readily
available data suitable for my studies that could be made available to others for further
investigation. My primary goal in collecting data was to provide a reliable basis for
comparing representations used in writer-independent handwriting recognition. As a
secondary goal I hoped to provide a rich source of handwriting for study on its own.
These goals required collecting data from a relatively large number of subjects under
as few constraints as practical.

The limited scope of this study necessitated concentrating on a particular writing
style. I selected handprinting because this style is requested often when clarity is
required. However, I provided minimal instruction to subjects on what handprinting
entailed. By permitting connected printing and multiple allographs, I hoped to strike
a balance between totally unconstrained writing and unreasonably rigid restrictions.

I selected a 62-character set comprised of upper-case letters, lower-case letters, and
digits. This alphabet supports a wide range of tasks and includes highly confusable
symbols such as the letters “O” and “o” and the digit “0.” I chose to focus on
individual character strings to include coarticulation effects while avoiding special
handling for spaces and line breaks. For similar reasons I excluded error correction
from this corpus.

Within these broad restrictions there are a number of ways to collect data. Under
the most relaxed conditions, subjects would freely expound text of their own choosing.
This offers the greatest variability in data captured, but requires a large corpus to
ensure satisfactory coverage of rare linguistic events. In a more directed protocol,
subjects would respond to questions. The likely replies can be controlled by carefully
choosing the queries. For example, a question to elicit “pp” in the response might be
“What fruit is commonly given to a teacher?” Because the question is open-ended, a
variety of replies are possible. In the most restrictive method, subjects reiterate each
prompt. This is the technique I have used because it gives the tightest control over
the data recorded, a strong benefit when the size of the corpus is extremely limited.

When corpus size is limited, it may also be desirable to ensure that its specifica-
tion is compact. A design stressing this criterion attempts to provide a more dense
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population of linguistic phenomena than would be observed typically. This reduces
the amount of material to be collected but distorts the statistical distributions of the
data. In addition, the corpus design process itself is then more complicated. An al-
ternative is to randomly select material from a larger collection of appropriate texts.
This approach is simple and approximates the statistical properties of the sampled
texts, but on average a large amount of material will be required to achieve coverage
of rare events. Note that a compact design is distinct from a balanced design, which
provides an identical number of occurrences for each phenomenon.

I chose to select prompts in order to compactly cover a particular set of character
sequences. This approach has been applied successfully for speech corpora. For
example, the TIMIT corpus [43] was designed to provide speech for studying acoustic
phonetics. As such it was deemed important to capture the mutual influences of
neighboring phonemes. Half of the prompts presented to each subject, designated as
“SX” sentences, were hand-crafted to contain relevant phoneme pairs more frequently
than expected by random word selection!. Covering longer sequences, even whole
words or phrases, may be desirable to capture contextual effects more completely.
However, as the sequences grow longer they rapidly increase in number while the

contextual effects diminish.

2.3 Selecting Character Sequences

The approach [ have taken is different from previous designs in that it selectively
covers character sequences of variable length rather than exhaustively covering those
of a fixed length. The sequences of interest are selected because of their significance,
which I define as the ability of a sequence to function as a unit itself within the
language. By applying an appropriate metric to a text corpus the most significant
sequences can be identified. Focusing on these sequences for my design, I hoped
to capture the more relevant multi-character strings without needlessly bloating the
corpus.

For this approach to work an appropriate body of text is required. I used a lexicon

Tn fact, I considered using this part of the TIMIT design for a handwriting corpus but found
that the compactness property did not extend to the orthography.
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Figure 2.2: Summary of data collected over time from a New York Times newswire
service showing the total number of words gathered (All Words), the size of a lexicon
containing these words (Unique Words), and the number of words seen only once
(Singular Words).

derived from two sources. The first source consists of articles appearing on a New
York Times wire service [23], processed automatically to remove control information,
editorial alerts, and non-text data. The remaining texts, covering topics from world
news to cooking, were divided into words (retaining case and related punctuation).
Such data were recorded over several years as shown in Figure 2.2, but this portion
of my study was conducted ecarly in the collection effort. At the time, approximately
3.4 million words were available. These were filtered to include only lower-case words
occurring at least twice. The second source consists of 360,000 words in a commer-
cially available lexicon [86]. The two sources were intersected to reduce the number of
foreign terms, proper names, and typographical errors, producing a lexicon of nearly
33,000 words along with their relative frequencies.
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2.3.1 Pair Cohesiveness

The definition of significance given above is too imprecise to be used in defining
a metric. Instead I used an exemplar sequence to test potential metrics. For English
orthography, the sequence “QU” should receive a high score because “Q” is followed
by “U” except in borrowed words. I will call the measured property cohesiveness to
distinguish it as not necessarily reflecting true significance.

For the moment, consider scoring only sequences of length 2. Frequency is an
intuitive measure of cohesiveness, with more common character pairs being more
cohesive. Unfortunately, “Q,” and so “QU,” is relatively rare in English.

Instead a cohesiveness metric must measure the frequency of a sequence relative
to that of its constituents. This suggests computing the mutual information [22]
between adjacent letters. This approach is similar to that used by Church [7] to
identify related words within a text. Such a metric seems to work in that it ranks
“QU” second only to “ZZ” as highly cohesive. However, it tends to favor any sequence
in which the constituents are rare. This can explain the ranking observed, because
“Z” is far more rare than “U.”

The bias could be corrected by normalizing mutual information against a se-
quence’s probability of occurrence. I found that this did not work well in some cases
due to the combination of log and linear terms. The solution then is to use the
negative log of the probability for normalization. I call this “pair cohesiveness,” and

define it as:

P(:Euxn—kl)
P(24) P(Znt1)
— log P(zZn41)

log

C(ZnTpsr) =

where z, denotes the appearance of a character in position n. An alternate expla-
nation of this metric is the ratio of the mutual information between characters to
the self information of the pair. When both logs are taken using the same base this
measure is dimensionless. The top ranked letter pairs in my lexicon as scored by this
metric are shown in Table 2.1. Based on the ranking of “QU” this metric is certainly
acceptable and many of the other pairs make sense as well.

The pair cohesiveness metric can be used to construct longer sequences of interest.
One may iteratively use the metric to find the most cohesive pair in the corpus and
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Rank Pair | Rank Pair || Rank Pair || Rank Pair || Rank Pair
1 QU 1 ¥ 21 OM 31 VU 41 NO
2. TH 12 OF 22 LY 3% e 42  GN
3 77 13 ND 23 BY 33 OW 43 BE
4 NG 14 IN 24 BU 34 WI 44 BL
5 JU 15 ON 25 BJ 35 HA 45 BO
6 WH 16 OU 26 VO 36 ZV 46 ED
7 CH 17 1Z 27 VA 37 0OJ 47 IX
8 GH 18 FO 28 VV 38 EN 48 AX
9 XP 19 CK 29 VY 39 AN 49 OX

10 VE 20 JO 30 EX 40 UN 50  UX

Table 2.1: Some character pairs from a 33,000 word lexicon as ranked by pair cohe-
siveness.

treat it as its own unit. It is important that constituent units are then dissolved in
case they were merely intermediaries to longer, more cohesive units. The beginning
of such a run is shown in Table 2.2. Note that in step 13 the “NG” unit is dissolved
while in steps 29 and 30 the “TH” unit is dissolved but immediately reconstituted.
This suggests that “NG” serves only as an intermediary in creating “ING” while
“TH” is in fact a strongly cohesive pair. Although I have developed this technique
to form cohesive letter sequences, the metric is defined in general terms that can be
applied to other atomic units such as words. For example, Table 2.3 shows the initial
steps on sentences from the VOYAGER domain [92] for navigating within the city of

Cambridge.

2.3.2 Sequence Cohesiveness

A shortcoming with the approach I have described is selecting an appropriate
stopping criterion, particularly due to the dissolution of intermediate sequences. At
any time the next sequence formed can be more cohesive than its predecessors. It
would be preferable to compute the cohesiveness of all sequences simultaneously.
This can be done by extending the pair cohesiveness metric to measure sequence
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Step + — || Step + — || Step + = Step + =
1 QU 11 VI 21. 1O 31 VO
2 TH 12 OF 22 OM 32 VA
3 Z1Z 13 ING | NG 23 CK 33 VV
4 NG 14 ND 24 LY 34 VY

5 JU 15 IN 25 BY 35 AND |ND
6 WH 16 ON 26 BU 36 EX
7T CH 17 OU 27 BJ 37 VO
8 GH 18 1% 28 COM | OM 38 VU
9 XP 19 FO 29 THE | TH 39 TO
10 VE 20 FOR | FO 300 "TH 40 OW

Table 2.2: Identifying variable-length cohesive sequences from a 33,000 word lexicon
by iteratively applying pair cohesiveness. The “+” column indicates new units created

while the “—” column indicates old units dissolved.
Step + - Step &+ =

1 ice + cream 11 john f + kennedy | john f
2 hong + kong 12 royal + east

3  mount + auburn 13 border + cafe

4 mass + ave 14 cafe + sushi

5 cajun + yankee 15 memorial + drive

6 post + office 16 phone + number

i post + offices 17 telephone + number

8 john + f 18 two + twenty

9 f+k 19 two + fifty
10 j+1fk fk 20 seven + seventy

Table 2.3: Identifying cohesive word sequences in a corpus of transcriptions from a
geographic navigation task. Sequences formed in steps 2, 3, 4, 5, 10, 11, 12, 13, 14,
and 15 are all significant as landmarks in the domain.
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Rank String | Rank String | Rank String | Rank String | Rank String
1 E D 21 W 31 VE 41 RE
2 T 12 P 22 K 32 LY 42  OU
3 I 13 U 23 IN 33 J 43 COMP
4 N 14 M 24 NG 34 ER 4  MP
5 S 15 H 25 X 35 XP 45 77
6 R 16 G 26 QU 36  ON 46 ED
7 A 17 X 27 ING 37 CO 47 JU
8 0] 18 A% 28 TH 38 THE 48 EXP
9 L 19 B 29 Q 39 HE 49 QUI
10 C 20 F 30 Z 40 EX 50 COM

Table 2.4: Character strings from a 33,000 word lexicon ranked highly by sequence
cohesiveness.

cohesiveness:

Pl -« Tim)
T
H Pe(z:)

C'n--- m) — =n
(@ 2m) ~Jog P, ()

log

where Py(z,...Tn) is the probability of the sequence z,...z, and P.(z;) is the
probability of the character z;. There are many ways to estimate these probabilities.
Based on empirical studies I adopted simple estimates - dividing the frequency of
a sequence by the total number of sequences and the frequency of a character by
the total number of characters. Provided these totals are unequal, this results in
a non-zero cohesiveness for individual characters. Table 2.4 shows the top-ranked
sequences based on this metric. The ranking of letter pairs does not match that of pair
cohesiveness because the methods of estimating probabilities differ. It is encouraging
that individual characters are generally ranked high on the list since they are by
definition fundamental units. It is interesting that the character string I considered
an exemplar of significance is the only case of a sequence being more cohesive than
its character constituents: “QU” has been ranked higher than “Q” alone.

Having scored all character sequences against one another using this metric, a
subset of the sequences must be selected for inclusion in the corpus design. To do so I
computed the cumulative lexicon coverage as a function of the number of multichar-
acter sequences selected in order of cohesiveness. A graph of this function is shown
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Figure 2.3: Percentage of characters in a large lexicon covered by the most cohesive
sequences. Only the first 2000 multicharacter sequences are shown.

in Figure 2.3. Based on this I selected the 200 most cohesive sequences to account for
most of the gain in coverage. Some of these are not needed due to subsumption by
other members of the list. For example, the sequence “GRAPH” may be eliminated
because it is wholly contained in “OGRAPHY.”

Using cohesiveness to select character sequences for coverage provides a foundation
for corpus design but it does not take into account all of the criteria of interest.
Accordingly, I included a number of other sequences specifically to elicit handwriting

confusions and contrasts:

e all 26 characters in the word-initial position, so that they may be used as a

source of capital letters;

e the 23 allowable characters in the word-final position, to capture effects associ-

ated with finishing writing;

e the 16 available doubled characters (such as “tt”), both to capture effects as-
sociated with the doubling and to allow for a side-by-side comparison of letter
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ability dd izing ol squ vu #o h#
able de ju 00 ss Vv #p i#
ably ding ke ously st wa #q k#

alized ee king over ta work #r 14

an equ la ow ted 7zl #s m#
ar es Ic pa ter #a #t n#
ate exp ling pe th #b #u oF

ations form lization pl tically #c #v p#
back fully In po ting #d #Hw r#

bb ge lo PP tively #e #x s
bu ha ma pro tr #f #y t#
ce he mb qualif tt #g #H7 u#
ch hing ment que uff #h aff wH
c ho mi quizzic um #i b# ¥#
cl ification ne re und #j cH y#
comm ight nn ring ur #k d# zH#
comp il ography m uv #l1 et
con ingly oi iog uzz #m f#
ction is 0] sh vi #n g#

Table 2.5: Character sequences to be covered in designing a handwriting corpus. The
# character indicates a word boundary.

forms;

e a set of 15 letter pairs which may be difficult to segment properly because they

can be confusable with single characters, as shown below.

¢i in In o wvu
¢l 1o lo ol m
ic le ol uv 11

These result in a total of 272 character strings, of which only 149 are required after

allowing for subsumption. A complete list of these sequences is shown in Table 2.5.

2.3.3 Summary

One approach to corpus design is to cover a set of units. Typically these units
have been fixed-length sequences of characters. I have proposed an alternative us-
ing sequences of variable length. These sequences are identified using a measure
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of cohesiveness motivated by information theory. For the handwriting corpus being

developed, I augmented 200 such letter sequences with strings of interest to my study.

2.4 Prompt Selection

Having decided on the character sequences to be covered in the corpus design, I
now turn to selecting material used in recording the corpus itself. I will depend on a
large body of text to provide potential material. The aim of the selection process is
to choose a subset of texts from this body to cover the desired sequences as efficiently
as practical. Maintaining character balance in the design is desirable provided it does
not compromise the primary goals of coverage and compactness. In the past material
selection has been done through introspection with computer assistance. The key to
my approach is to recognize the task as a search problem which can best be performed

by computer (with the researcher granting final approval).

2.4.1 Algorithm Development

A straightforward means of selecting material from the source lexicon is to do
so randomly until full coverage is achieved. This procedure does not result in a
particularly efficient design. In fact, if even a few rare sequences are to be covered, on
average random selection will require that nearly the whole source be included. Much
of the material chosen will contain only common sequences which have already been
covered. Correcting this is trivial: simply reject randomly selected material that does
not provide at least one previously unseen sequence. This results in a vastly more
compact design than truly random selection.

This procedure still treats all material as equally desirable. Yet, some texts ad-
vance the completion of the design more than others. A more efficient approach
favors candidates which provide the greatest number of needed sequences. At each
step, score the possibilities according to the gain in coverage they would provide and
sclect randomly from amongst the winners. This results in an even more compact
design, but it still treats each sequence to be covered as equally needed.

When linguistic material contains an infrequent character sequence it tends to
contain frequent sequences as well. In the extreme case of a sequence appearing only
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once, the string which contains this sequence must be chosen to achieve complete
coverage. In doing so the more common sequences in that text are covered with-
out additional cost. This suggests favoring the selection of candidates containing
infrequent sequences to avoid duplicating coverage of common sequences, a strategy
opposite to that of the search procedure described above. This can be corrected by
weighting character sequences inversely proportional to their frequency in computing
the individual scores. Once a sequence has been covered its weight is zeroed.

The scoring procedure I used is somewhat more complex to improve compactness
and balance. A merit score is computed for each word in a lexicon as described above.
In addition, a demerit score for each word counts the number of redundant sequences
provided. Rather than combine these scores, they are applied sequentially to favor
compactness over balance. To achieve an optimally compact or truly balanced design
requires a search procedure exploring multiple paths. I have sided with simplicity
and instead perform a best-first search to achieve a step-optimal result with complete

coverage. My algorithm for selecting words at each step is:

Select the word with the most merits;

When there is a tie, break it by selecting the candidate with the fewest demerits;

When there is a further tie, randomly select from the shortest candidates;

Adjust the merits and demerits of other words to reflect the selection;

Verify the acceptability of the selected word by presenting it to the researcher.

2.4.2 Algorithm Evaluation

In order to evaluate the selection algorithm, I employed a task which is readily
duplicated. The evaluation uses a 20,000-word lexicon, based on the Merriam Webster
Pocket Dictionary [52], which has been used in other lexical studies. The sequences to
be covered are letter pairs found in the lexicon. This list is sorted by frequency. The
unweighted, equally weighted, and frequency weighted approaches described above
are applied to cover the most frequent deciles of these pairs. The number of words
and characters needed to achieve coverage is recorded. Both of the weighted cases use
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the same merit-demerit selection algorithm. However, the unweighted case is handled
differently to prevent a bias towards extremely short words. The experiments are
repeated using the least frequent deciles.

Each test is based on 10 runs with the lexicon reshuffled between them. The mean
results are shown in Figure 2.4. Fewer than 200 words, just 1% of the lexicon, can
provide complete coverage with the frequency weighted search. In fact, all pairs can be
covered using the same number of words as is needed to cover only the least frequent
60% of pairs (though somewhat longer words are required, as shown by the number
of characters selected). In all cases the effect of rare pairs dominates. Frequency
weighting provides the greatest advantage when we have a mix of common and rare
letter pairs to cover. I believe this is because there is little latitude in selecting words
to cover rare pairs and much freedom in covering frequent pairs. With only rare
pairs the words required are virtually prescribed. With only common pairs nearly
any selection will be reasonable. Any of the techniques investigated is preferable to
true random selection, which required an average of 19,017 words to cover all letter

pairs.

2.4.3 Algorithm Application

The first step in selecting words for my corpus design is to acquire an appropriate
source of text. I began with the 33,000 word lexicon described above. Some of
these words are unsuitable for the design. Words with fewer than 3 or more than
15 characters were excluded. Because of the way I anticipated collecting data, words
that are hard to spell or ambiguous [40] were also removed from contention. Finally,
words which may be deemed offensive, controversial, or otherwise unacceptable were
eliminated during the selection process. The remainder, approximately 23,000 words,
comprise the source material to choose from.

The frequency-biased selection algorithm was applied using the variable length
sequences previously selected. These units were permitted to overlap, and single-
character units were added to fill the remaining voids in each word. Sequences were
excluded from the word-initial position unless they appeared nowhere else. Complete
coverage of these units could be achieved using only 53 words containing 474 charac-
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Search Type

Pairs to be Equally Frequency
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Figure 2.4: Mean number of words (top) and characters (bottom) needed to cover
character pairs extracted from a 20,000 word lexicon as a function of the percentage
of pairs considered.
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Accountability Disqualified Justifications ~ Rejuvenating Transform
Agonizingly Embraces Kidding Revving Uncomfortably
Announcing Fabulously Lump Seeker Unexpected
Approaching Frightfully Mate Shadow Unworkable
Backing Fuzz Menu Skiing Vanquish
Cafeteria Geography Normalization Spoiling Volcanic
Commanding  Governing Omitted Surrounded Wobble
Comparatively Hugging Projections Swab Xylophone
Complex Inconsequential Puff Sympathetically Yearbook
Declaring Industrialized Puzzlement Taxi Zero
Decompress Invulnerable Quizzically

Table 2.6: Words to be used for data collection to achieve compact coverage of sig-
nificant letter sequences.

02066 16380 35124 54331 79158
05521 23687 45922 60839 86773
07856 27657 47190 61449 88253
10342 29697 48170 72898 94095
13262 30464 50011 74184 99375

Table 2.7: Numbers to be used for data collection to achieve compact coverage of
digit pairs.

ters. This is quite compact given that the coverage criteria include observing every
letter in both initial and final positions. Even fewer words could have been selected
if I had been less conservative in rejecting potentially objectionable material. A list

of the words selected is shown in Table 2.6.

My corpus design also includes digit strings. A lexicon was generated containing
all 100,000 5-digit numbers. The sequences to be covered included all 100 digit pairs
along with each digit in the initial and final positions. The selection algorithm was
applied to choose a subset of the numbers for the corpus as shown in Table 2.7. For
this contrived task, the selection algorithm managed to cover all sequences in the

fewest strings possible.
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2.4.4 Summary

I have described a procedure, incorporating multiple criteria, for selecting material
to be used in corpus design. The key idea presented is that coverage of rare phenomena
should be given precedence to enhance the compactness of the result. I have applied
these principles to select prompts for a handwriting corpus, yielding 53 words and 25

digit strings.

2.5 Collection Methodology

As I have described, the procedures used to collect data can have a substantial
impact on the handwriting recorded. In collecting my data I have taken particular
care to control unwanted influences. This is reflected in the facilities for handwrit-
ing capture, the protocol used with subjects, and the task subjects performed. A
key difference between my data collection and previous efforts is the way subjects
were prompted. The commonly taken approach of presenting prompts visually risks
contaminating the handwriting data by influencing character shape and size. Addi-
tionally, framing data collection as a text copying task requires the subject to shift
their visual attention repeatedly from the prompt to their writing, an action unlike
the fixed focus during spontaneously written material. To avoid both of these deficien-
cies, I elected to present prompts aurally. One female speaker recorded the required
phrases, both pronouncing and spelling each word. This material was digitized to
permit consistent playback at will.

No suitable programs for handwriting data collection were available for this study.
To avoid the arduous task of writing a low-level driver for a tablet and display, I
based my software on the Windows for Pens operating system. My task was further
simplified by using Visual Basic with Pen Extensions for constructing the application.
Data collection was performed using a Compaq Deskpro 486/33 computer equipped
with a Sound Blaster Pro audio board and Sony MDR-V6 headphones.

Handwriting was digitized using a Wacom model HD-648A tablet with integrated
LCD display. This tablet works with a cordless stylus that does not require a battery.
Although pressure sensitive styli are available, I chose not to use one due to their

56



bulkier design.? The standard pen for this tablet includes a barrel button which can
alter the writer’s grip. Accidently pressing this button interfered with data capture.
For these reasons, I deemed necessary a special pen, model SP-200A, which lacked
this button.

Subjects were recruited primarily through posters placed in hallways throughout
M.LT. Competency in English was required, but subjects did not have to be U.S.
natives. Modest compensation was provided in return for participation in the experi-
ment. Prior to data collection, subjects read and signed a release form using ordinary
paper and pen. Writers were seated at the digitizing tablet and permitted to position
it to their liking,.

Additional instructions were presented on the tablet’s display as shown in Fig-
ure 2.5. Progress was controlled by the subject through on-screen buttons which
were located centrally to reduce the left-right bias. Incorporating such buttons in the
instruction process begins the user’s acclimation to the stylus and tablet. Subjects
were instructed they would be asked “to listen to someone speaking and to write
down what you hear” on the tablet. The writing would be recorded by the computer
for “later analysis.” No further details of the experiment’s purpose were provided
until after data collection.

Next, instructions were provided on the use of the tablet. Subjects were asked to
hold the stylus as they would a pen. Only the stylus tip was detected, allowing the
hand to rest on the tablet’s surface. Subjects were asked to write only in the spaces
provided. If they made a mistake or were otherwise unhappy with their response,
the subjects were instructed to erase their writing (using an on-screen button) rather
than correct it. All responses were to be printed, but it was up to each subject to
interpret this writing style. To ensure that they were comfortable with the stylus and
tablet, subjects first were encouraged to write and draw whatever they wished within
a large arca until they were ready to begin.

The data collection process was divided into four phases according to the type of

data recorded. The first phase was for words. Subjects were asked to capitalize the

21t is reasonable to choose not to capture the pressure information. In preliminary studies I found
subjects maintained a fairly constant pressure through much of their writing, perhaps because this
is required for everyday writing implements.

57



NN

Welcome to our experiment!

Please read all of the instructions carefully. Should you have
questions, ask for assistance. If at any time you are
uncomfortable for any reason, you may immediately

) discontinue the experiment. Z
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To continue with the instructions, use the stylus to tap on the
"Next Page" button below. Place the stylus tip on the button,
push down gently, then release.

7/

Previony Page J | Next Page |

‘ Dontinue Experiment ‘

7z

Figure 2.5: Example data collection instruction screen.

first and only the first letter of each word. Because the corpus design featured each
letter in the word-initial position, this should provide a complete source of capital
letters for study. Each word was played once automatically but could be repeated as
often as desired by pressing a button. A second button would play a spelled version
of the prompt. Playing either recording erased any writing already present. Subjects
could write only after a prompt had finished playing. These measures ensured that

the writing process was uninterrupted.

The screen used for this phase is shown in Figure 2.6. The writing area was
made as large as practical and dominated the tablet’s screen with the bottom margin
reserved for control buttons. No guides were used, allowing the subject to position
and size their responses as desired. The area was cleared between responses as the
subject advanced through the recording agenda. The first two words requested from
each subject were for calibration purposes and not intended for recognition studies,
but the subjects were not aware of this. In addition to allowing the subjects to
acclimate to the experiment, the calibration words “Acknowledgment” and “Fake”
exhibited the range of string lengths seen in the remaining prompts. Thus the subjects

58



[ Play Phrase and Eraze Witing I | Spell Phrase and Erase Writing

| Continue Esperiment

%

Figure 2.6: Data collection screen for words and numbers.

could adjust their writing size to the task without requiring an abrupt change mid-
collection. Subjects were monitored while writing these two words and reminded of
the instructions if necessary. Subsequently, no monitoring was performed while the

53 actual prompts were presented in random order.

The second phase of data collection was run similarly to collect the 25 digit strings.
Since by this time the subject should have been comfortable with the experiment, no

calibration prompts were used.

In the third phase of data collection, subjects were asked to provide examples of
how they wrote each character. Three screens were used to collect this data, one cach
for upper-case letters, lower-case letters, and digits, as illustrated by Figure 2.7. Each
screen contained one labeled box per character in the set. Subjects could erase their

input one box at a time as needed.

The fourth and final phase of data collection was a single screen form filling task,
shown in Figure 2.8. The handwriting captured was not used in my experiments,
the true purpose of this phase being to record biographic information. However, the
questions were selected so as to provide not only useful information but a range of
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Figure 2.7: Example data collection screen for boxed characters.

response styles. This data provided a number of surprises. For example, subjects
were asked to report their gender in a small box. While most subjects responded
with an “M” or “F,” some used the astronomical symbols for Mars or Venus. Each

subject required 20-30 minutes to complete the data collection procedure.

2.6 Data Preparation

Handwriting was collected from 159 subjects. The biographic information was
transcribed and entered into a database. Subjects ranged in age from 12.5 years to 63
years, with a median age of 25 years. Approximately 62% of the subjects considered
themselves to be students. Non-natives comprised 16% of the writers, dominated
by 5 individuals each from Canada, England, and India. 56% of the subjects were
male and 87% of the subjects were right-handed. The subjects were assigned to one
of 4 categories, training (105 subjects), development testing (30), evaluation testing
(15), and spare (9), maintaining the balance of gender and handedness to the degree
possible. Both test sets are used to determine system performance on “unseen” data.
However, a system will be adapted to the testing material when it is repeatedly
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What is your first or given name? Tour age?

)

0 //////////////////

Where did you receive your primary education? (City + State or Country) g Your gender?
T /////////////
Which hand do you write with? You:r weight?

/
NI ///////////////////
What language did your parents speak at home? Student?

/

.

| Eraze All Etase Last | Lontinue Experiment [

Figure 2.8: Data collection screen for the biographic form.

appraised and improved using a single test set. The evaluation data is held until
the very last of my studies to be used as truly unscen data for reliable performance

measurement. Ideally, this set would be used for evaluation only one time.

All of the word and number data were transcribed using software written specif-
ically for the task. The responses were displayed individually at the size they had
been written. The prompt text was supplied as a default string to be edited by the
transcriber as a means of saving effort. Comments could be included to note un-
usual phenomena. I transcribed the bulk of the data, but potential test material was

handled by an impartial transcriber.

The transcription strings were aligned with the handwriting using a tool gener-
ously provided by the Microsoft Pen Computing Group. This tool was restricted to
aligning data at the stroke level and so could not properly process connected char-
acters. The aligned transcriptions were checked and corrected using another custom
application which could divide strokes between characters. Each data sample was as-
signed to exactly one transcription token. Special symbols were included to designate

ink not part of any character, namely ligatures, pen skips, and trash (consisting of
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Transcription All Letters | Digits
Property Symbols | Only Only
Count 12402 8427 3975
Differs From Prompt 3.7% 4.7% | 1.4%
Contains Ligatures 9.8% 13.9% | 1.1%
Contains Trash 2.2% 2.7% | 1.1%
Contains Pen Skip 1.8% 21% | 1.2%
Contains Case Error 1.2%

Table 2.8: Some basic properties of the transcriptions in the entire handwriting cor-
pus.

embellishments and corrections). Examples of these are shown in Figure 2.9.

The transcriptions permit a quantitative analysis of the handwriting corpus. A
summary of some properties is shown in Table 2.8. Some 3.7% of the responses
differed from the prompt text, excluding special symbols inserted for transcription
purposes. This is a relatively high number compared to what we might expect using
visual prompting, and it is high considering that we took care to select prompts which
were unambiguous and easy to spell. The most error-prone prompt, “Rejuvenating,”
was misspelled by over 25% of the subjects with “Quizzically” and “Comparatively”
close behind. Most often the error was substituting a single character for another.
Approximately one quarter of the word errors were in case alone. The error rate for
words was over three times that of numbers. As one might expect, the nature of the
numeric errors is quite different from the alphabetic errors. Rather than substitution,
most often neighboring digits were exchanged. The pair swapped was not uniformly
distributed and almost never appeared in the final position. Interestingly, a transpo-
sition error in the initial position was sometimes corrected by writing characters out
of order as illustrated by Figure 2.10. The initial character written is the second digit
of the prompt. The next character written is the first digit of the prompt, and it is
placed immediately to the left of the initial character. The remainder of the string is
written in standard order.

Not all of the subjects complied with the data collection instructions. This can
be shown through statistics on transcriptions from their data. In Figure 2.11 I have
shown the error rate for each subject. Most of the errors are in capitalization and
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Figure 2.9: Examples of special writing.

Prompt
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Time

Figure 2.10: Example numbers containing an initial digit pair transposition corrected
through altered writing order.
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Figure 2.11: Error rate for each subject in the corpus.

should not have significant impact. However, subject 108 not only made more errors
than any other subject, these errors were typically more severe. For some prompts
the subject responded quite aberrantly, as shown. Roughly 77% of the subjects
connected some of their characters. This is permitted in the data, but cursive writing
is not. As an objective measure of cursive writing, I examined the percentage of
characters connected by each subject, shown in Figure 2.12. One subject, number
133, connected substantially more characters than was typical. To err on the side of
caution, four others subjects were marked as potential cursive writers. In transcribing
the data, one subject was identified as providing particularly “creative” responses as
shown in Figure 2.13. While strictly meeting the data collection instructions, this was
viewed as writing quite distant from what is natural or typical. Handwriting from the
seven subjects mentioned above was rejected and not examined further. Replacement
subjects from the “spare” designation were selected to best match the biographic
profile of each undesirable writer. Writing from the two remaining spare subjects was
not used. In addition, any responses that contained corrections or embellishments
were sct aside. Although graceful handling of such data is important for deployed
applications, it is beyond the scope of this study. The net size of the handwriting
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Figure 2.12: Percentage of characters connected by each subject in the corpus.

Figure 2.13: Creative writing provided by one subject.
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Tokens
Designation | Subjects | String | Boxed
Training 105 60,767 | 6,510
Development 30 17,651 1,860
Evaluation 15 8,734 930
Total 150 87,152 | 9,300

Table 2.9: The amount of data available in the handwriting corpus.

corpus I collected is described in Table 2.9.

2.7 Character Clustering

The alphabet used in my classification studies contained 62 symbols. This does not
imply that there were 62 archetypes to be distinguished. Examples of some characters,
such as the letter “O” and the digit “0,” may be indistinguishable, decreasing the
number of archetypes. Other characters, such as “z” or “7,” may be present as several
allographs, increasing the number of archetypes. A multitude of factors influence the
choice of allograph written. In the extreme, one may claim that every example of a
character is its own allograph because no two are produced under identical conditions.
The question of what constitutes an allograph is really a matter of degree in similarity.

It would be useful to catalog the extent and manner of allographic variation even
without fully comprehending its causes. Except for the most common examples,
this is a laborious task requiring many subjective judgments. Furthermore, it may
be difficult for humans to discern contrasts in handwriting production which do not
influence the character’s image. This is only a limitation if such variation is viewed
as critical to distinguishing some allographs.

If a metric can be defined to compare character shapes, it may be used to objec-
tively identify allographs through a clustering procedure. The results would not be
unique; alternate metrics and clustering algorithms might suggest different allographs.
A representation I describe on page 112, resampling the handwriting at a fixed num-
ber of equally-spaced points, is useful for comparing characters because it permits a
one-to-one alignment between pen trajectories. This reduces the problem of measur-
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ing the distance between character shapes to measuring the distance between points.
[ chose to calculate the mean Euclidean distance between corresponding points in
each character. To provide clarity in the displayed allograph shapes, each symbol
was encoded using 32 points.

All of these experiments were based on the k-means clustering algorithm [83]
applied to the training set. An initial cluster was formed containing all characters
to be considered. At each iteration of the clustering algorithm, a new cluster was
seceded with the worst outlier of any existing cluster. This favors the construction
of smaller clusters modeling unusual shapes over improving the fit to the bulk of
the data. Clusters and means were re-estimated until convergence was reached. No
stopping criteria were used other than visual examination of the clusters formed.

The clusters found for five characters are shown in Figure 2.14. Crosses indicate
one standard deviation around each point and an arrow marks the final pen-up. In all
cases certain allographs are strongly favored over others as indicated by the number
of tokens assigned to each cluster.

Four variants of “I"” are identified. In all cases the vertical stroke proceeds down-
ward, but the horizontal stroke may go in either direction. Either of the strokes may
precede the other. The second allograph was written only by right-handed subjects
while the third and fourth were exclusive to left-handers. Four variants are also iden-
tified for “d.” The first two have the bowl written before the stem and are quite
similar. This demonstrates how small displacements can result in large cumulative
distances with this metric. In the third case the stem precedes the bowl. The final
case is a “D” written as a small capital. Of the three “a” allographs shown, the second
is also a small capital form. Both “9” and “f” show variations in stroke order. The
third, rare variant of “9” is particularly interesting in that its bowl is constructed in
two parts and its stem greatly curved.

The same clustering procedure was applied at a larger scale to identify prominent
character shapes. To prevent lower-case characters from dominating the results, a
balanced data set was constructed to contain 92 randomly selected examples of cach
character, foregoing some variability. From this, 62 clusters were formed as shown
in Figure 2.15. Each cluster is identified by the three most frequent labels for the
characters it contains, shaded to indicate their frequency. The shape most strongly
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Figure 2.14: Allographs of five characters identified by k-means clustering.
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associated with a single label is an “e” in the third row. Several clusters were assigned
to circular shapes; in each case different starting points have resulted in displacements
along the entire curve, making the shapes distinct under the chosen metric. These
clusters are quite different from the mean representations of the 62 characters, shown
in Figure 2.16. Unusual shapes, for example those of “I” and “z,” indicate that the
mean does not fit the data well. Such characters are likely to have two or more

common allographs, as can be seen by referring back to Figure 2.14.

2.8 Summary

In this chapter I have described the development of a handwriting corpus suit-
able for my intended studies. I have described some of the factors which influence
handwriting production and should be taken into account when collecting data. The
specification of the corpus compactly covers a set of significant character sequences.
The sequences were chosen using a metric motivated by information theory. A search
procedure identified words to cover these sequences efficiently, and the compactness
of this design was improved by favoring the selection of rare constituents first. Addi-
tional prompts were constructed in a similar manner for digit strings.

I paid particular attention to the data collection environment to reduce unwanted
influences on the subject’s handwriting. The digitizer selected provided a stylus simi-
lar to common writing implements. A large writing area was provided to ensure that
writing was produced at a comfortable size, position, and orientation. A key innova-
tion was the use of aural prompts to avoid exposing subjects to character prototypes.
This, combined with describing the required writing style only as “printing,” leads to
a natural range of letter forms.

Aligned transcriptions were produced for the words and numbers collected. Based
on these, I excluded handwriting unsuitable for this study. The result is a data corpus

rich in information and reflecting natural handprint variability.
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Figure 2.15: 62 prominent character shapes identified by k-means clustering.
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Chapter 3

Comparing Representations
Through Classification

An important decision in constructing a handwriting recognition system is se-
lecting an appropriate data representation. In this chapter I describe a number of
data representations and compare character classifiers based on them. I begin by
presenting the results of an authentication study to establish human performance on
this task. I then describe the classification approach taken and detail the represen-
tations tried, touching briefly on allographic variation and glyph similarity. Having
determined the leading representation, I show how tuning its parameters improves
classification accuracy.

If the primary goals of this thesis involve handwriting recognition, why am I
performing classification experiments? One may view the recognition process as a
sequence of three steps. The input signal is first segmented into regions corresponding
to characters, perhaps including alternate paths to allow for ambiguity. Next, each
segment is classified to determine how well it resembles the character prototypes seen
in training. The final step searches through the lattice of labeled segments to find
the most likely candidate string.

Unlike the psycholinguistically motivated phonemes of speech recognition, letters
are undeniably the building blocks of written text. We are taught writing by form-
ing individual characters rather than whole words. Except for homographs, a text’s
meaning can be adequately reconstructed from its letters alone. Thus it is safe to
assume that some reasonable letter segmentation technique is possible. This allows
us to decouple the recognition steps for research purposes by depending on the best
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single-path segmentation available: a hand transcription of the data. The determin-
istic nature of the transcription reduces the number of segments to be considered,
greatly decreasing the time needed to perform experiments and allowing more rep-
resentations to be examined. In addition, fewer factors affect the results because
automatic segmentation errors and recognition system control parameters are elimi-
nated. Still, it is worth remembering that an otherwise lackluster representation may
be well suited to the idiosyncrasies of a particular segmentation scheme. Components

are integrated and optimized collectively in the best recognition systems.

3.1 Data Authentication

The fact that the handwriting corpus could be transcribed demonstrates the legi-
bility of the data. However, reading character strings is a complex process incorporat-
ing higher-level knowledge in areas such as vocabulary, grammar, and domain. Even
at the symbol level, otherwise ambiguous shapes can be uniquely identified when com-
pared to their fellow characters. Because of the many external constraints brought
to bear on the reading task, it would be wrong to presume the data to be equally
unambiguous at the symbol level. Yet the degree to which this is true has great
impact on the character classification problem’s difficulty, since the decision criteria
stem only from each symbol itself. Accordingly, I have conducted an authentication

study to assess the legibility of individual characters excised from their context.

3.1.1 Procedure

Authentication was performed only for string and boxed data in the development
and evaluation sets because these were the potential test sets. This handwriting was
divided among three paid authenticators. The experiment was conducted with special
purpose software illustrated in Figure 3.1. Each character was displayed in isolation,
centered in the uppermost pane, at the size it was written. Tokens were shuffled to en-
sure that sequential characters had neither the same writer nor potentially confusable
labels, but this level of detail was not disclosed to the authenticators.

The authenticators were told that the data would be shown in random order and
relative size was unimportant. Each item presented would consist of exactly one
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Figure 3.1: The display used for handwriting authentication.

character. On-screen buttons were to be toggled to indicate, in preferential order,
any number of labels appropriate for each token. Prior responses could be recalled
and edited as necessary. Authenticators were self-paced and paid hourly to ensure

that fatigue was not a significant problem.

3.1.2 Results

The authenticators labeled over 29,000 tokens. Their responses were compared
to the transcription labels for each token. A summary of the results is shown in
Table 3.1. Approximately 1.2 labels were assigned to each character. From the
standpoint of the classification experiments I have run, the development strings were
the most important portion of the handwriting corpus. Nearly 82% of these tokens
were correctly identified by the authenticators according to their top-choice labels. An
additional 6% of these answers consisted of the correct letter but were the wrong case.
Considering all labels assigned to each character, the correct response was among the
authenticators’ choices only 87% of the time. Interestingly, case substitution was

twice as common for boxed data.
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Over- | Development Evaluation
All Strings | Boxed || Strings | Boxed

Top-choice Accuracy || 82.0% 81.7% | 76.5% 84.1% | 78.9%
Case Substitution 6.6% 6.1% | 13.1% 54% | 12.5%

Correct Label Listed || 87.6% 87.0% | 85.4% 89.2% | 86.4%

Table 3.1: Results of the data authentication experiment.

The authentication study I conducted was designed to mimic the conditions of
character classification to the degree practical. Two caveats should be kept in mind.
First, the manner in which handwriting was presented did not include the dynamic
information available in some experiments. This made the authentication task more
akin to off-line recognition. Second, these results do not necessarily represent a ceiling
for character classification accuracy. Although humans are the best handwriting
recognizers in existence today, there is no reason to assume that a computer could
not exceed their level of performance. Also, the task of identifying characters in
isolation is quite different from the string recognition which people perform so adeptly.
Despite these limitations, the authentication results provide the best means available

for gauging the difficulty of the classification task at hand.

3.2 Methodology

There are many factors which influence a classification experiment, even the clas-
sifier itself. In theory, one could search through all combinations of all options to
the training procedures, classifiers, and representations to identify the highest ac-
curacy system. However, there are far too many possibilities to make this problem
tractable. Furthermore, accuracy is only one measure of system performance, and it
may not even be the most important property from a user’s perspective. Rather than
wringing the best possible accuracy from a few representations through incremental
gains, I have focused on sampling the sub-optimal performance of a greater number
of representations.
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3.2.1 Symbol Inventory

One of the basic decisions made was the unit to be classified. I selected characters
because they are the smallest unit for which the label inventory is generally agreed
upon’. Because aligned transcriptions were created for the handwriting corpus, it
was a trivial matter to extract the data and label associated with each character.

Other possibilities do have their advantages and were not overlooked. A smaller
unit such as strokes could result in more robust models by sharing data from many
symbols. Labels could be constructed based on stroke order within each character.
Similar strokes could then be clustered. However, care must be taken lest unaccept-
able combinations of strokes be considered a character. Furthermore, it would be
difficult to classify strokes meaningfully without considering their position relative
to their neighbors. Units larger than characters are also viable. Digraphs, or even
words, could better capture contextual variation and ordering constraints. However,
as the size of the classification unit grows the average amount of training data per
model decreases, reducing the robustness of the classifier. There is no reason to be
limited to a single type of unit. For example, a system might be based primarily on
characters but include models for the most frequent multi-character sequences. This
approach is sometimes taken in speech recognition [45] by explicitly modeling the

short but highly variable function words in an otherwise phoneme-based system.

3.2.2 Classifier Technology

The choice of classifier used in a recognition system is intimately tied to the data’s
representation. The best combination of accuracy and efficiency is typically achieved
when the models’ parameterization closely matches the underlying distribution of the
feature vectors. Because I was not concerned with system speed, I traded computa-
tional cfficiency for added flexibility. This allowed a single classifier to be used for a
wide-range of representations, eliminating model disparity as a factor affecting accu-
racy comparisons. In addition, a flexible model could implicitly capture allographic

variation.

'Although one may argue that that inventory of allographs is unknown, only the character
grapheme need be identified for recognition purposes.
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Rather than implement a classifier, [ have taken advantage of existing technology.
My experiments are based on a component of MIT’s summMIT [93] speech recogni-
tion system. This classifier incorporates mixture Gaussian models [50] with diagonal
covariance matrices. Input vectors are rotated using a principal components anal-
ysis [35] and scaled to normalize the average within-class covariance. The classifier
implicitly incorporates unigram statistics of the training data.

Two parameters of the classifier control the number of components used in each
mixture model. An absolute maximum limits the possible number of components per
class. While more components can improve the fit of the model to training data, too
close a fit may not generalize well to unseen data. More components also increase
the computation required and the number of model parameters to be estimated. The
other parameter specifies a minimum number of training tokens assigned to each
mixture. This ensures the robustness of each model at the expense of a poorer fit for
less common variants.

Values for these parameters ideally would be chosen independently for each rep-
resentation to yield the greatest accuracy, but this is a computationally expensive
procedure. Instead I applied a single set of values to all experiments. These were
determined empirically using a bitmap handwriting representation described in sec-
tion 3.3.1. The results of this study are shown in Figure 3.2. Note that the accuracy
scale is condensed to accentuate differences. Permitting only a single component per
class, the equivalent of a Gaussian classifier, did not perform as well as allowing for
mixtures. As expected, accuracy waned when conditions allowed for many compo-
nents trained on very few tokens. The classifier was not particularly sensitive to the
values used except for extremes, but somewhat higher accuracy could be achieved
by permitting relatively few tokens per component. Based on these results I chose a

maximum of 128 mixtures per model and a minimum of ten samples per mixture.

3.2.3 Experimental Procedure

In order to make comparisons between handwriting representations meaningful,
it is crucial that identical procedures are maintained across all experiments. Central
to this are consistent training and testing data sets. For the writer-independent
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Figure 3.2: Character classification accuracy as a function of control parameters to
the Gaussian mixture classifier.

technology investigated, it is equally important that testing subjects be disjoint from
training subjects. Except where noted, the classifier for my experiments was trained
on alphanumeric characters from strings in the training set and tested on similar data
in the development sct. Boxed data was treated separately in adjunct studies. The

evaluation data was held pristine until the very end of my investigations.

It was also important to manage differences between experiments so that perfor-
mance gains could be attributed to single factors. Handwriting recognition systems
often incorporate one or more preprocessing steps such as slant correction. The
intention of these operations is to reduce the data’s variability, although errors in
preprocessing can introduce their own noise. The value of these algorithms is not
necessarily uniform among representations. For example, detecting and correcting
character orientation is unnecessary for representations insensitive to rotation. These

differences could confound analysis of the results.

For this reason, I climinated all but a simple preprocessing step: each character
was translated and scaled to fit within a unit bounding box, preserving the aspect
ratio. This eliminated absolute size and position information. Due to the limited
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nature of the handwriting corpus analyzed, such information might otherwise be
exploited to improve classification accuracy. For example, because upper-case letters
usually occur only at the start of each word, they tend to be written towards the left
side of the data collection area. If these biases were not eliminated they could have
been incorporated by the classifier, yielding misleading results. The duration of each
character was similarly normalized to 1, starting at ¢ = 0.

It is worth noting that size and position are particularly troublesome areas for
handwriting recognition. It is generally desirable to accommodate writing at a va-
riety of sizes located anywhere on the writing surface, suggesting that some type
of normalization is appropriate. Yet the relative size and position of characters are
vital for discriminating between some characters (such as “C” and “¢” or “9” and
“g”). The simple normalization I have chosen excludes any contextual information
and exacerbates certain confusions.

All that remained was the selection of handwriting representations to consider.
My choices were governed partly by what could be found in the literature. I generally
eschewed techniques which have proved deficient for speech recognition: those using
rule-based features incorporating hand-tuned thresholds. These representations are
not only difficult and time consuming to construct, they can also be quite fragile. The
better approach is to provide the raw variables to a classifier and allow the system to
learn appropriate decision criteria.

I divided the field of handwriting representation into two broad categories. Some
representations, such as images of the handwriting, discard the pen’s movement.
These static representations are equally applicable to off-line handwriting classifi-
cation. Other representations encode information, such as the velocity of the pen,
available only from on-line data. Such dynamic representations can incorporate pen
motion directly, or indirectly by maintaining the order of static features extracted
along the pen trajectory. Recall that determining the efficacy of representations re-
quires attributing performance differences to individual factors. Since a goal of this
thesis is investigating the usefulness of the pen’s trajectory, I paid particular attention
to contrasting representations which differed only in their use of dynamic informa-
tion. For this reason I considered hybrid representations, a special case of dynamic
representations that encode pen movement in an otherwise static image.
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The statistical classifier used in my experiments required that each handwritten
token be represented as a bounded-length feature vector. Distilling each character’s
data into such a feature vector is a key problem in character classification. For a given
type of representation, too few dimensions will not provide enough information to
permit accurate discrimination, while too many will exceed the information content
of the original data. A larger number of dimensions also increases the number of
parameters to be estimated in training the classifier. Thus, a longer feature vector
need not yield superior accuracy. The degree of detail extracted by a representation
typically can be varied. It was important to explore a range of parameters for each

representation lest promising representations be passed over.

3.2.4 Summary

Building a handwriting classifier requires many decisions which are mutually de-
pendent. Due to the large realm of possibilities, a truly optimal system is rarely
guaranteed. Typically decisions are made sequentially, securing at best a locally opti-
mal solution. I chose to investigate a broad array of potential representations rather

than inch toward an elusive performance goal.

3.3 Static Representations

The first class of representations investigated were static in the sense that they
did not incorporate pen motion. Instead, they were based on solely the image of a
character. These images could be manipulated before constructing a feature vector
for classification.

Creating a bilevel image, or bitmap, from on-line handwriting data is fairly simple.
Within each stroke, iterate through pairs of sequential pen samples. The line con-
necting these points can be imaged using Bresenham’s scan conversion algorithm [16],
taking care to ensure that isolated points contribute a single pixel. A more complex
alternative would connect the strokes’ points using some type of curve fitting proce-
dure, but I found this had little if any impact on the representations I examined.
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3.3.1 Pixelated Images

The simplest manipulation one might perform on an image is no manipulation;
the image may be classified directly. In some sense this is already proven technology
since it is the form of handwriting we read. However, this does not imply that images
are necessarily the best representation in any sense.

Because every character in the corpus was normalized to a unit bounding box, a
square pixel array was used to hold each image. The single parameter for this rep-
resentation is the resolution of the array. For purposes of comparison with certain
other representations it was advantageous to use powers of 2 for the resolution. The
smallest bitmap I considered was 4 pixels on a side since it was at the limit of leg-
ibility; the largest was 16 x 16 due to implementation restrictions of the classifier?.
An intermediate 8 x 8 bitmap was also evaluated. Examples of these are shown in
Figure 3.3.

Converting a bitmap to a feature vector for classification was simply a matter of
placing the pixels in an arbitrary but consistent order. Numeric values of 0 and 1
corresponded to white and black pixels respectively. Having computed the necessary
feature vectors, the classifier may be trained and tested. The raw classification results

consist of a vector of scores, one value per label, for each token in the test set.

Result Analysis

There are many ways to process classification results so that we may assess the
system’s performance. Since these are the first results presented, I have taken the
opportunity to describe some of the possibilities.

Perhaps the most common performance metric is to compute top-choice accuracy
by comparing each token’s highest-ranked classifier label with its transcription la-
bel. The accuracy for each of the bitmap representations is shown in Figure 3.4.
Of the possibilities tried, the 8 x 8 resolution yielded the best accuracy. The lower
performance of the 4 x 4 resolution is probably due to its being too coarse to ade-

quately differentiate between some characters. Similarly, the high dimensionality of

2For example, as the image resolution increases adjacent pixels tend to be more strongly cor-
related. This condition was poorly handled by the algorithms chosen for principal components
analysis.
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Figure 3.3: A character and its bitmap image representations.
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Figure 3.4: Top-choice character classification accuracy for bitmap representations.

the 16 x 16 resolution probably hinders robust modeling. One might employ signifi-

cance testing [24] to ensure the accuracy differences are meaningful.

Top-choice accuracy measures the average system performance. However, the
accuracy obtained by a particular writer depends on the degree to which their hand-
writing matches the classifier’s prototypes. Accuracy on a particular subject’s data
can vary greatly, as shown in Figure 3.5. Among the testing subjects, accuracy ranged
from 31.9% to 77.3%. Since deployed systems must serve a large fraction of the pop-
ulation, it may be desirable to evaluate approaches based on the lowest accuracy
among some portion of the testing subjects. Thus one might say this representation
achieved a median accuracy of 61.6%, but only 50.3% or better accuracy on 80% of
the testing subjects. Note that approximately two-thirds of the testing subjects were
associated with accuracies above the lowest-scoring training subject. Excluding data

from such outlier training subjects may result in improved system performance.

Entropy can serve as a more comprehensive performance metric [47] because it
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Figure 3.5: Top-choice accuracy by subject for the 8 x 8 bitmap representation.

accounts for the distribution of errors. For example, a character classifier which errs
only in letter case may be preferable to an equally accurate system producing errors
uniformly distributed over all symbols. To create a measure comparable with accuracy
(ranging from a paltry 0% to a perfect 100%), I compute entropy reduction:
I(X;Y)
H(X)

where I(X;Y) is the average mutual information [22] between correct and classifier
labels and H(X) is the entropy of the correct labels. Entropy reduction for the bitmap
representations is plotted against top-choice accuracy in Figure 3.6. The correlation
between the two measures is typical except for degenerate representations. Despite its

theoretical advantages, in practice entropy is rarely more informative than accuracy.

Distilling classification results to a single number is noble, but it does not reveal
the nature of symbol substitutions. This can be achieved using a confusion matriz.
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Figure 3.6: Comparing accuracy with entropy reduction for bitmap representations.

Each cell in the matrix represents an accumulator, indexed by the correct and clas-
sifier labels of each token. Top-choice accuracy can be computed from values along
the diagonal. The wide dynamic range of bubble charts makes them particularly
well-suited for presenting confusion matrices. Because of the wide disparity in label
frequencies for handwriting, I chose to normalize the data within cach transcription
label. Figure 3.7 shows such a display for the 8 x 8 bitmap representation. I included
guides to make the areas for upper-case letters, lower-case letters, and digits more
distinct.

The errors made by the classifier are far from uniformly distributed. As might be
expected, errors are biased toward more frequently occurring characters. Structure
resulting from case substitution can be seen as two off-diagonal lines of confusions.
Other significant sources of error are characters confusable because of their similar
shapes, including “1” with “l,” “0” with “o,” “q” with “9,” “S” with “5,” and “v”

with “u.”
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Figure 3.7: Character classification confusions for the 8 x 8 bitmap representation.

The similarity between characters, as defined by a particular representation, can
be made apparent by restructuring the confusion matrix through an agglomerative
clustering procedure [14]. Clusters are initialized so that they cach contain a single
character. The two most similar clusters are merged, iterating until only a single
cluster remains. Both the cluster similarity metric and the merging procedure may
be varied. T chose a simple merging procedure: the corresponding rows and columns
in the confusion matrix are added to represent the conjoined confusions. For cluster
similarity I measure the mutual information between all correct and classified token
labels. The most similar pair of clusters retain the greatest amount of information
when merged. A character dendrogram constructed in this manner is shown in Fig-
ure 3.8. This display shows both the clusters formed and their relative strengths.
The earlier clusters generally make sense from a pictoral standpoint, perhaps best
illustrated by the structuring of “I,” “i,” “L,” “I,” and “1” at the far right of the
diagram.

All of these evaluation methods have examined only the top-choice classifier label.
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Figure 3.8: Clusters based on mutual information over 8 x 8 bitmap classifier confu-
sions.

An alternate approach considers the remaining candidates by computing the mean
depth of the correct label in the classifier result vectors. Again, reducing the perfor-
mance to a single number has its place but obscures system behavior. Instead, one
may plot the cumulative accuracy of observing the correct label in the top-n classifier
labels. Such a display is shown in Figure 3.9. The first data point corresponds to top-
choice performance. The last always corresponds to 100% accuracy, since the correct
answer must be in the response vector. A steeply sloping curve rapidly reaching the
final value indicates a better classifier.

While all these methods have been used in various stages of my research, I will
depend primarily on classification accuracy in comparing representations. It is simple
to compute, succinct, and meaningful. Also, it allows for a comparison between

classification and recognition systems.

Pixmaps

In preparing bitmaps for classification the spatial relationship between pixels was
not preserved. Bitmaps which are visually similar can have very dissimilar feature
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Figure 3.9: Cumulative accuracy for the 8 x 8 bitmap representation.

vectors. Small variations in pen coordinates can produce these differences due to
quantization with hard thresholds. The principal components analysis should recover
the correlation between pixels, but explicitly addressing this problem could potentially
yield higher accuracy.

One approach is smoothing the bitmap so that a pixel’s value is distributed across
its neighbors. This can be accomplished by convolving a blurring kernel with the im-
age to produce a pixmap (in which pixels can take on arbitrary floating-point values).
An example of this processing is shown in Figure 3.10. The blurring kernel was spec-
ified to have unit volume, but its precise shape was arbitrary and in fact should be
optimized. Blurring does not introduce additional information to the representation.
The key to its potential success is purely in making the feature vector distance better
reflect character distances.

An alternate was to soften the thresholds used in setting pixels to produce an

anti-aliased image [17]. Because of spatial quantization, many sets of endpoints can
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Figure 3.10: Convolving a 16 x 16 bitmap with a blurring kernel.

produce identical scan-converted lines. This aliasing can be reduced by setting pixel
values based on their distance to the line. My algorithm for creating such character
images is illustrated in Figure 3.11. A bitmap image is produced at double the
requested resolution and blurred as described above. The final pixmap is constructed
by averaging higher-resolution pixel values corresponding to each lower-resolution
pixel. This type of image does introduce additional information, in effect encoding

higher resolution as gray levels.

[ examined both of these representations at the three resolutions used for bitmaps.
The results are shown in Figure 3.12. Blurring the images did not affect the accuracy
compared to that of the original bitmaps. The anti-aliased images showed gains at
lower resolutions. Note that the 8 x 8 anti-aliased image performed substantially

better than the 16 x 16 bitmap on which it is based.

Summary

The first class of representations I considered were images because of their natural
relationship to writing. An 8 x 8 bitmap yielded an accuracy of 60.7%. A number of
related performance measures were demonstrated. The accuracy of image classifica-
tion could be increased to 63.8% by using an anti-aliasing algorithm.
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Figure 3.11: Constructing a 16 x 16 anti-aliased image from a blurred, higher-
resolution bitmap.
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Figure 3.12: Top-choice character classification accuracy for pixmap representations.

3.3.2 1-D Projections

Producing an anti-aliased character may be viewed as projecting an image onto a
lower resolution space, reducing the feature vector size by increasing the quantization
levels per pixel. Since this operation improved classifier accuracy for low-resolution

images, further dimensionality reduction might result in addition performance gains.

The notion of projection can be extended to producing 1-dimensional results. For
example, each element in an accumulator array may sum pixel values from a single
column in an image. An orthogonal projection could be produced by summing pixels
from each row. A desirable property of these projections is that they can provide
complementary representations of the character. Two shapes which are confusable
when projected along one axis may be resolvable when projected along another. Pro-
jections along arbitrary axes may be produced by rotating the character before it
is scan converted. Thus, this type of representation has two controlling parameters:
the number of pixels in the accumulator array and the axis along which the image is
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Figure 3.13: Constructing 16-pixel, 1-dimensional projections of a character from its
bitmap images. Pixels are summed within each row or column.

projected.

For my experiments I considered four projection axes inclined at 0°, 90°, 45°, and
135°. Examples of these are shown in Figure 3.13. The first two projections are
based on the same bitmap images already investigated and so allow for a meaningful
comparison with them. The other two projections evenly divide the range of direc-
tions. These choices are somewhat arbitrary. Were this representation adopted for
classification, the optimum angles should be identified.

In the baseline experiment on this representation, these four projections were con-
sidered individually. Each projection’s accumulator array was used as a feature vector.
As with the image representations, 3 resolutions are considered. The results of these
experiments are shown in Figure 3.14. The 90° projection consistently yielded the
best accuracy. However, even this representation performed worse than the bitmap

from which it is derived.

Combining Projections

The complementary nature of these projects suggested constructing a feature vec-
tor by adjoining them. The performance of three cases, two combining orthogonal
projections and one combining all considered projections, is shown in Figure 3.15.
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Figure 3.14: Top-choice character classification accuracy for projected bitmap repre-
sentations.

The representation size reflects the image used for each projection. Thus, a 4-pixel
representation containing two projections resulted in an 8-dimension feature vector.
All of these combinations performed better than the individual projections from which
they were composed. Representing characters using all four projections consistently

worked better than an equivalently sized bitmap.

Two comments are in order. First, this experiment showed that complementary
sources of information could be used to increase the accuracy of a character classi-
fier. However, the marginal utility of additional representations diminished due to
the limited information of the source. The accuracy for a combination of the two
worst performing projections, 4 pixels at each of 45° 4+ 135°, exceeded the sum of its
component’s accuracies. Such substantial gains were not realized for combinations of
the better projections, such as 8-pixel projections in the same directions. As more
components were added to the feature vector, the accuracy of the system eventually
decreased due to the additional parameters that had to be estimated in training the
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Figure 3.15: Top-choice character classification accuracy for combinations of projected
bitmaps.

classifier. Second, this experiment showed how the organization of a representation
could affect classification performance. The combination of 16-pixel projections at
0° 4+ 90° did not contain sufficient information for an unambiguous reconstruction of
the source image. Despite this, it yielded superior performance compared to the more
informative bitmap. In addition to the information available to the classifier, we must

pay attention to how that information is presented.

Pixmap Projections

I have shown that an anti-aliased image can yield higher classification accuracies
than its corresponding bitmap. Would projections based on these grayscale images
similarly perform better? For this experiment I examined only the best projection
method observed: the combination of all four projections considered. This projection
was computed for both the simple bitmap and its anti-aliased cousin. The results of
this experiment are shown in Figure 3.16. In all cases the projected representation
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Figure 3.16: Comparing the top-choice character classification accuracies of 4-way
projected images derived from bitmapped and anti-aliased sources.

outperformed the images. Additionally, the projection of anti-aliased images consis-
tently outperformed the bitmap-based projections, perhaps because they incorporate

higher resolution information.

Summary

I have shown how to combine rotation, scan conversion, and accumulation to
project a character along any axis. By projecting along multiple axes, the resulting
one-dimensional images could be combined to form a representation with superior
performance. In fact, this experiment has yielded the best classification results de-
scribed thus far: the combination of 0°, 90°, 45°, and 135° projections of an 8 x 8
anti-aliased image provides a character classification accuracy of 68.8%.
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3.3.3 Image Transforms

We have already seen that transforming a character’s image to an alternate rep-
resentation can improve classification accuracy. In this section I examine some of the
many other transforms possible. My selections were motivated by representations

that attempt to explicitly capture distinctive symbol characteristics.

Hough Transforms

Characters are formed from lines and curves. In character images these structures
exist only as correlations between pixels. However, the image may be transformed to
better reflect the underlying geometric construction.

The first such transform examined assumes the image is composed of only straight
lines. In general the problem of detecting colinear points is difficult. The Hough trans-
form [3], more completely examined by Leavers [44], reduces this problem to a simpler
task of locating intersecting curves. Planar lines may be uniquely specified using two
parameters. Hough’s formulation was based on the slope-intercept parameterization
of a line, but both of these parameters are unbounded. An alternative parameteriza-
tion suggested by Duda and Hart [12] avoids this difficulty by representing the normal

to a line. Under this formulation the equation for a line is
xcost +ysinf =r

where 6 is the angle of the normal and r is the distance from the origin to the line.
An example of two lines running through a single point is shown in Figure 3.17.

To compute the Hough transform of an image, the §-r parameter space is quantized
and represented using a set of accumulators. Parameters are computed for all possible
lines passing through each point in the image by stepping through values of 6. The
indicated accumulators are then incremented. This transforms each image point into a
curve in parameter space. A trivial example of this transform is shown in Figure 3.18.
The image, shown on the left, contains only two pixels. These have been shaded
differently to show the correspondence between each point and its contributions to

“curves” can be seen, with the taller curve due to

the transform, on the right. Two
the point more distant from the origin. A line connecting the two image points is
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Figure 3.17: The normal parameterization of two lines through a single point.

represented by the intersection of the parameter space curves.

A careful inspection of Figure 3.18 reveals that the parameter space curves do
not intersect in the sense that they have no common pixels. This problem stems
from the procedure used to draw the transform: when the slope of the curve has
magnitude greater than 1, stepping through angle values results in an inadequate
sampling of radius. This may be remedied by connecting adjacent samples with a
straight line, as shown in Figure 3.19. The utility of this connected Hough transform
will be determined through classification experiments.

For my experiment I considered three transform sizes based on the bitmaps de-
scribed earlier. At each size I compared plain and connected Hough transforms. The
manner in which I applied the transform differs from common practice in two respects.
First, to reduce the number of variations considered I restricted the resolution of the
parameter space to match that of the image. These values are independent and could
be optimized separately. Second, constructing the parameter space representation is
typically followed by peak detection to identify the parameters of prominent lines.
In general this is a difficult problem which introduces an additional source of error.
Following the philosophy of avoiding hard decisions, I constructed the feature vector
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Figure 3.18: A simple bitmap image and its Hough transform.
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Figure 3.19: Connecting points in a Hough transform to better represent intersections.

99



1 009/0_ ........................................................

Connected Hough Transform
75% [] Bitmap Image

Classification Accuracy

4x4 8x8 16x16
Image Size

Figure 3.20: Top-choice character classification accuracy for plain and connected
Hough transforms.

using the entire transform. Note that parts of the parameter space are unreachable
and are excluded in assembling the feature vector. Retaining the whole transform has
a secondary benefit when the data includes shapes other than lines. Curves, approx-
imated by many straight lines, will generate a characteristic transform in parameter
space which is not a single point. By avoiding peak selection these diffuse shapes can
be detected. The results of this experiment are shown in Figure 3.20. Connecting
points was beneficial only for the smallest transform. The best case was only slightly
more accurate than the image from which it was constructed.

How well do Hough transforms represent the character data? One way to evaluate
this is to reconstruct an image from its transform. Provided the correct technique
is used for reconstruction, this demonstrates the information preserved in the trans-
form. The results can be analyzed objectively, by comparing the original image to its
reconstruction with some distortion measure, but even a subjective visual inspection
can be informative. Performing an inverse Hough transform is relatively straightfor-
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Figure 3.21: Images, their Hough transforms, and reconstructions.

ward. Each point in the parameter space corresponds to a line in the image at a
particular intensity. To reconstruct the image, these lines are drawn retaining the
strongest intensity for each pixel. Elements of the original images can be seen in the
reconstructions of Figure 3.21, but the results are far from perfect. Straight lines
are better represented than curves. However, the endpoints of each line are not re-
tained. Depending on the shapes to be classified, this could be a desirable property
or disastrous.
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Figure 3.22: The parameterization of two circles passing through a single point.

Circle Transform

Parameter space transforms may be applied to finding shapes other than lines. As
described by Kierkegaard [38], I have examined representing character images using
a circular arc parameterization. Circles in a plane may be uniquely specified using
three parameters, two coordinates for its center and one for its radius. An example
of two circles passing through a particular point is shown in Figure 3.22. At a given
radius, an image point is transformed into a parameter-space circle; as the radius is
varied, the transform of a point becomes a cone. The point at the intersection of

three such cones corresponds to the image of a particular circle.

In order to keep the feature vector size commensurate with earlier experiments,
I chose to retain only the center parameters from the transformation. Each center
was valued at the maximum for all of its radii and constrained to appear within the
bounds of the source image. Examples of this representation are shown in Figure 3.23.
As might be expected, a strong center is identified within the more circular “G,” but
a characteristic transform is associated with other shapes as well. For example, a cir-
cular arc approximates a line as its radius approaches infinity. Within the limitations

102



E
o
o]
Y=
n
c
©
il
P =

Figure 3.23: Examples of circle centers detected by a parameter-space transform.

of this particular implementation, lines at the edge of the image field can be better
represented since they can obtain the largest radii.

As with other experiments, I considered three sizes of circle transforms. Detect-
ing circle centers could potentially provide complementary information to that given
by the Hough transform. Accordingly I also evaluated a combination of these two
representations. The results are shown in Figure 3.24. The combination of circle and
Hough transforms consistently outperformed the circle transform alone. However, for
the 8 x 8 image the combination did not perform as well as the Hough transform
alone. At that resolution the two transforms do not provide sufficient complementary

information to overcome the burden of additional model dimensions.

Two-Point Transforms

The parameter space transforms described so far are based on individual points,
with all potential parameterizations passing through each point considered. For typ-
ical images, the majority of these parameterizations will prove uncorroborated by
other points. The resulting transforms are cluttered with many potentially insignifi-
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Figure 3.24: Top-choice character classification accuracy for circle parameter trans-
forms.

cant components, possibly degrading classifier accuracy. This situation may be reme-
died by reducing the number of parameterizations considered for each point. A shape
characterized by n parameters may be uniquely specified using n of its points. Thus, a
transform may be pruned of impossible candidates by processing points in sufficiently
large groups.

[ have examined three parameter space transforms based on pairs of points. These
are illustrated in Figure 3.25. The colinear transform is comparable to a Hough
transform. Rather than consider all lines passing through a single point, it is based
on the parameters of a single line passing through two points. This line is encoded
using the angle and radius of the normal, just as before. The midpoint transform is
comparable to the centers extracted from the circle transform. For each pair of points,
the location of their midpoint is accumulated. The symmetry transform extends this
notion from points of symmetry to lines of symmetry. The midpoint of two points
lies on a potential line of symmetry. These lines can be identified by taking a Hough
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Figure 3.25: Three parameter space transforms based on pairs of points.

transform of all the midpoints.

Again I conducted classification experiments based on three sizes of bitmaps and
present the results in Figure 3.26. In general the performance of these transforms
was disappointing. However, these results suggest that making the entire transform
available to the classifier was a prudent decision. It seems that transform components

attributable to single image pixels help to characterize the shape.

Fourier Transform

All of the images treated so far have been in the spatial domain. A 2-Dimensional
Discrete Fourier transform (2D-DFT) converts an image to the spatial frequency
domain. In this domain, pixels may take on complex values. Unlike other transforms
examined, a 2D-DFT preserves all information present in the image. This can be
demonstrated by perfectly reconstructing the original image from its transform pair.
The transform has two potential advantages over the original image. First, the basic
shape of the image is contained in the lower frequencies while details reside in the
high frequencies. This organization could assist the classifier by concentrating the
more salient information. Second, the shape of graphical elements may be treated
independently from their position. This is accomplished by encoding the transform’s
complex values as magnitude and phase.

I have only examined square images with 2" pixels per side because this restriction
simplifies construction of the 2D-DFT. The resulting transform is also square with 2"
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Figure 3.26: Top-choice character classification accuracy for two-point parameter
transforms.

pixels per side. However, redundancy in the transform of real inputs permits half of
this plane to be discarded. I compared feature vectors constructed from the magnitude
and phase alone as well as the two combined. The results of this experiment arc
shown in Figure 3.27. It is interesting that the accuracy of the phase representation
decreased as the transform size increased. I hypothesize that this is due to the higher
resolution images permitting greater variability in the position of character elements.
Since position is encoded by the phase, this translated into greater variability for
the phase component. None of the 2D-DFT representations performed better than
the original image, perhaps because both shapes and their positions are important in

distinguishing between characters.

Summary

In this section I have examined a number of image transforms. They do not
add information to the original image and in fact may add noise. Rather, their
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Figure 3.27: Top-choice character classification accuracy for two-dimensional discrete
Fourier transforms.

potential power lies in restructuring the pixels to make distinguishing characteristics
more apparent. Regardless of the theoretical benefits, my character classification

experiments showed no compelling reason to adopt any of these representations.

3.4 Dynamic Representations

Unlike static representations, dynamic representations depend on the pen’s trajec-
tory. This results in additional variability which must be modeled, but also additional

information which may aid distinguishing characters.

3.4.1 Hybrid Representations

I have relied on images as a proven and non-controversial representation of char-
acters for classification. Indeed, experiments have proven its performance to be satis-
factory compared to other static representations. In this section I suggest several ap-
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proaches to incorporating dynamic information within images. These provide means
of evaluating the usefulness of pen movement data for character classification. In
standard character scan conversion, a single value is used as “ink” to fill-in pixels
where the stylus contacted the writing surface. The key to hybrid representations is

varying the ink throughout the character to represent an additional variable.

Scalar Hybrids

In the first set of hybrids the ink, and so the image, is limited to scalar values.
When drawing into a non-empty pixel, the greater ink value is retained. Examples of
three such representations are shown in Figure 3.28. In one hybrid, an alternate ink
value is used to represent the connections between strokes. A straight line is drawn
with this ink from the pen-up position of one stroke to the pen-down position of the
following stroke. The remainder of the character is scan converted as before. A lesser
value is chosen for the pen-up ink to give the actual writing priority. The other two
hybrid images “color” the pixels of a bitmap. In one case, pixels within each stroke
are assigned a unique identity. Later strokes overwrite earlier ones. This permits the
number and order of strokes to be determined, but not the direction of each stroke.
In the other case, the ink values express the time of writing (recall that this has been
normalized within each character). The line drawn between two samples is valued at
the average time for that segment. This representation allows the stroke direction to
be deduced in addition to stroke order.

The results of this experiment, conducted on three image sizes, are shown in Fig-
ure 3.29. The dynamic information proved useful only for the smallest representation.
In that case the normalized time ink provided considerable improvement, exceeding
even the performance of an image with 4 times as many pixels. This suggests that
coarsely quantized dynamic information is more useful. However, normalized time

ink consistently yielded superior performance over the less detailed stroke order ink.

Vector Hybrids

In the second set of hybrids the ink takes on vector values. Vector addition is used
to combine old pixels with new. Examples of such representations for instantaneous
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Figure 3.29: Top-choice character classification accuracy for scalar hybrid images.

109



Figure 3.30: Representing vector variables within hybrid images.

velocity and acceleration, computed from first and second differences between points,
are shown in Figure 3.30. The arrows indicate the direction and magnitude of the
dynamic parameter for each pixel, but the direction should prove more useful. The
results of using these representations at 3 sizes are shown in Figure 3.31. Not shown
are the results for using the magnitude alone, for this did not fare well. In all cases
using the direction of the vector alone proved better than including both direction
and magnitude. Once again, dynamic information proved useful only for the smallest

image.

Summary

I have shown how dynamic information can be incorporated in an image to deter-
mine its utility. The results obtained are inconclusive. For larger images the dynamic

information degraded performance, but the opposite was true for the smallest images.

3.4.2 Trajectory Sampling

Dynamic character representations are based directly on the writing data sam-
ples without the spatial quantization and temporal aliasing associated with images.
Knowing that pen position corresponds to ink in the image, one might select the
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Figure 3.31: Top-choice character classification accuracy for vector hybrid images.

Cartesian coordinates of data samples as the simplest, least controversial dynamic
representation. Since characters contain different numbers of samples, whercas fea-
ture vectors must all have the same length, some normalization procedure must be

applied.

Uniform Resampling

Simply truncating and padding the feature vectors starting with the first sam-
ple assigns the final sample to varying dimensions, if it is included at all. A more
desirable approach would produce similar feature vectors for isomorphic characters.
Accordingly, I have chosen to resample each character to an identical number of data
points along the pen’s trajectory.

I have examined two methods for uniformly resampling each character. For sam-
ples evenly distributed in time, the total duration of inking is computed and divided
by the number of samples desired. Note that this interval excludes time during which
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Figure 3.32: Resampling characters at 16 points separated by equal intervals of time
and space.

the pen is raised. For samples evenly distributed in space, the pen’s travel distance
is summed and divided, again ignoring movement between strokes. In both cases
the data is resampled at the appropriate interval using linear interpolation between
original data samples. Examples of these techniques are shown in Figure 3.32. The
difference between the two is most apparent at the top of the “G” when the pen is
moving slowly.

The number of samples taken should be determined empirically. Too few samples
annot adequately capture the character shapes. Too many will provide only linear
combinations of other samples. Hoping to cover the range of reasonable values, I
tested representations based on 2, 4, 8, and 16 samples. With only two samples, each
character’s initial pen-down and final pen-up were chosen. Samples each supplied
two values to the feature vector corresponding to the point’s Cartesian coordinates.
As a control I also considered randomly resampling the input. The writing was
first resampled at equally spaced intervals to produce four times as many points as
ultimately desired. An appropriate sized subset of these points, in temporal order, was
chosen at random. Random approaches should not be ignored for they can succeed in
unusual cases which confound the most carefully crafted heuristics. The results of this
experiment are shown in Figure 3.33. Random sampling did not work as well as the
uniform sampling techniques. Equally spaced sampling outperformed equally timed
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Figure 3.33: Top-choice character classification accuracy for Cartesian coordinates of
uniformly and randomly resampled pen trajectories.

samples for three of the four sizes. The best case of eight equally spaced samples
yielded a character classification accuracy of 76.1%. This is better than that achieved

with an 8 x 8 bitmap while using the same number of dimensions as a 4 x 4 image.

Sample Reordering

In constructing the feature vector for classification, the resampled representations
described maintain the order in which the ink was written. As seen in the allographic
clustering study, otherwise similar characters can differ in the order and direction
of their strokes. These differences can be eliminated by placing samples in an order
independent of their timing.

I examined only the equally spaced resampling since its performance was superior.
Characters were resampled at one of four resolutions already listed. These samples
were sorted spatially by increasing coordinates, arbitrarily giving priority to the or-
dinate. The feature vector was then constructed as before. As a control, shuffling
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Figure 3.34: Top-choice character classification accuracy for Cartesian coordinates of
equally spaced samples in several orderings.

the samples was also considered. Both of these representations were compared to
the temporal-ordered samples. Because the feature vectors contain the very same
data but in different orders, this provided another opportunity to evaluate the utility
of dynamic information. The results of this experiment are shown in Figure 3.34.
Spatial sample ordering was always inferior to temporal ordering, suggesting that the
dynamic information was indeed beneficial for this representation. Most differences
in stroke direction and order must be successfully assimilated by the mixture models.

Shuffling the points was inferior to maintaining some canonical order.

Nonuniform Sampling

Resampling the pen trajectory treats all points within a symbol uniformly. How-
ever, some points may play a greater role in establishing a character’s shape than
others. If a property can be defined to be coincident with these points, the pen tra-
jectory can be sampled unevenly to favor them. For this selection to be robust, the
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Figure 3.35: Top-choice character classification accuracy for Cartesian coordinates of
nonuniformly resampled pen trajectories.

property should be defined in relative terms rather than absolute thresholds. One

possibility is to sample points based on their instantaneous velocity or acceleration.

To compute these representations I began by equally-spaced resampling the char-
acters at 4 times the desired resolution. The samples were placed in ascending or
descending order according to the magnitude of their velocity or acceleration. The
feature vector was constructed using only the first quarter of the points. The results
of this experiment are shown in Figure 3.35. None of these techniques were superior
to equally spaced sampling. Sampling based on velocity consistently outperformed
sampling based on acceleration. The best of the four representations favored points
with low velocity, often associated with the beginning and end of strokes as well as
changes in directions.
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Figure 3.36: Top-choice character classification accuracy for equally spaced samples
encoded as Cartesian coordinates with other properties.

Alternate Encodings

Thus far I have constructed feature vectors from the resampled characters using
each point’s Cartesian coordinates. Many other properties can form the feature vector
instead of, or in addition to, position. I considered including velocity and acceleration,
alone or in combination, with the coordinates of each sample. Both the magnitude and
direction of these properties were used. The results from this experiment are shown
in Figure 3.36. Incorporating the additional information proved futile compared to
encoding position alone. Except for the smallest case, velocity again proved more

useful than acceleration.

If the feature vector is to be composed of point positions alone, there are still
many ways this can be formulated. I considered one alternative: representing equally
spaced points in polar coordinates relative to a character’s center of mass. The result
of this study is shown in Figure 3.37. This method performed well at the extreme
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Figure 3.37: Top-choice character classification accuracy for equally spaced samples
encoded as Cartesian and polar coordinates.

sizes, but it never attained the best accuracy of Cartesian coordinates.

A final possibility considered was encoding the coordinates in the frequency do-
main. This was done using a 1-dimensional, discrete Fourier transform along the
trajectory (TDFT). The character was first resampled at equally spaced points. The
coordinates of each point were converted to a complex number, according to the for-
mula x + 1y. These numbers were placed in a vector which is transformed to the
frequency domain. This processing can be understood best by examining a low-pass
filtered reconstruction of the character. In Figure 3.38 I have done this by inverse
transforming successive frequency domain coefficients. The DC component encodes
the center of mass for the character. Low frequency components define the overall
shape while higher components provide detail. In classifying the TDFT, I considered
the magnitude and phase of the coefficients independently. The results, shown in
Figure 3.39, indicate that this representation is no better than the original resampled

character.
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Figure 3.38: Reconstructing a character from successive Fourier coefficients.
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Figure 3.39: Top-choice character classification accuracy for a l-dimensional fre-
quency domain encoding of the pen trajectory.
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Summary

In this section I have examined a number of representations based on resampling
the pen trajectory of a character. The original motivation was to equalize the number
of points forming each character to establish a uniform set of classification vectors.
Additionally, I considered how to order and encode the points in cach vector. The
best representation used the Cartesian coordinates of eight equally spaced points to

obtain an accuracy of 76.1%.

3.4.3 Trajectory Coding

A popular method of representing shapes for classification is the Freeman or chain
code [2]. In its classic implementation, the pen’s movement between samples is quan-
tized into one of eight directions. The quantization boundaries are equally spaced
with one bin centered on 0° to avoid jitter in encoding horizontal and vertical lines.
Any pen trajectory can be represented as a string over an eight-symbol alphabet.
Straight lines are represented as runs of a single symbol while curves are approx-
imated by line segments. Characters with similar shapes will have similar chain
codes. The similarity can be made scale-independent by reducing repeated symbols
to single examples.

A particular shape may be identified from its chain code using syntactic pattern
matching [19], parsing the string of direction symbols to form less primitive constructs.
However, in order to make this approach comparable with other representations stud-
ied I did not introduce an additional pattern classification technique. Instead, the
coded trajectory was used as a feature vector to the Gaussian mixture classifier. A
cap was placed on the number of codes allowed in a given representation. When this
limit, was exceeded, codes representing the shortest segments were merged with their
neighbors as needed. A reserved symbol is used to pad strings which are too short.
This chain code representation has two parameters: the number of levels used to
quantize the direction and the maximum number of symbols permitted in a descrip-
tor string. The results of an experiment considering three values for each parameter
are shown in Figure 3.40. For all quantization choices, permitting a maximum of eight
codes per character gave the best performance. The eight-level quantization was con-
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Figure 3.40: Top-choice character classification accuracy for chain codes.

sistently inferior to making finer distinctions. The extremely poor performance of the
longest strings may be due to the same misalignment problem described for charac-
ters containing different numbers of samples. Resampling characters uniformly before
applying the chain code might have proved beneficial.

I considered two variations of chain coding. A given line can be produced by either
of two pen trajectories with directions separated by 180°. I postulated that it might
be worthwhile to alias angles when encoding pen motion so that this distinction is
hidden. Because this halves the range of values permitted, the resolution for a given
number of bins is doubled. Alternatively, the relative lengths of each coded run could
provide additional information about the character. After constructing the chain code
string its elements are sorted by run length. This implicitly represents the relative
length of lines within each character while maintaining the size-independence of the
encoding. Unfortunately, both of these approaches reduced classification accuracy
significantly.

I also considered an adaptive quantization of the trajectory angle. To construct
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Figure 3.41: Top-choice character classification accuracy for cluster codes.

the representation, each segment of the trajectory is first represented by its angle to
the horizontal. Adjacent segments which are most similar in direction are merged
through a weighted average. This process is repeated until the angle between all
segments and their neighbors exceeds a threshold. If needed, the resulting string is
brought below a length limit as was done for chain coding. Because this approach
clusters segments to quantize their direction, I call this a “cluster code.” 1 tried
this technique using thresholds matching the chain code bin widths described above.
The results are shown in Figure 3.41. The performance was comparable to that of
chain codes and in the best case slightly improved. None of the coded representations

worked as well as classifying the trajectory’s coordinates directly.

3.5 Improving Performance

Of the many representations examined, the best character classification accuracy
was given by the Cartesian coordinates of equally-spaced samples. None of the vari-
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ations on this technique — adding information, reordering the points, or alternate
encodings — yielded improved results. However, this does not mean the maximum

performance of this representation has been achieved.

3.5.1 Tuning Parameters

Ideally the parameters controlling the classifier would be tuned to the representa-
tion chosen, but this is a time consuming proposition. As a minimum, the parameters
controlling the representation itself should be set to produce the most accurate sys-
tem. For the best representation identified, the single controlling parameter specifies
the number of points to be sampled. Although I have already considered a range
of values for this, the specific choices have necessarily been sparse but will now be
expanded. Figure 3.42 shows the classification accuracy of this representation as the
number of points selected is varied from 2 through 16. The result is a broad plateau
which peaks slightly at ten points, though nearly the same performance could be
achieved with as few as six points. For brevity I will refer to the best parameteri-
zation of the best representation as the “champion representation,” rather than “the
cartesian coordinates of ten points equally-spaced along the pen trajectory.”

Since this was the best representation identified it deserves further analysis. Its
top-choice character classification accuracy was 77.2% for test data. Recall that this
was accomplished without relative size or position information. The comparable hu-
man performance, albeit on a static representation, was 81.7%. A confusion matrix
for the champion representation is shown in Figure 3.43. The errors are structured
similarly to those already described, with case substitution quite prominent. Other

”

highly confusable pairs, such as “0” with “0” and “h” with “n,” are generally rea-
sonable based on shape similarity. In some cases only particular allographs would be
confusable, such as dotless “1” confused with “I” or North American “z” confused with
“2.” In other cases additional graphic information would be required to resolve the
error. For example, “9” and “g” are confusable without knowing how the character
is positioned relative to the baseline.

The cumulative accuracy for the champion representation, shown in Figure 3.44,
is also encouraging. Not only does this representation achieve a relatively high top-
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Figure 3.42: Optimizing the number of points sampled by the best representation.

choice accuracy, alternate candidates quickly cover the answer. The correct label
was among the top 2 choices 90.1% of the time (compared to 89.7% for the untuned
representation). This is not surprising given the large number of case errors and
suggests that resolving such confusions could result in dramatically higher top-choice

accuracy.

3.5.2 Subject Cohorts

Removing inter-subject variability by focusing on writer-dependent classification
is likely to improve system accuracy provided that adequate training material is avail-
able. However, it is possible to realize a reduction in inter-subject variability, with-
out incurring the disadvantages of writer-dependency, by considering subject cohorts.
Subjects within each cohort should have similar writing characteristics. These cohorts
might be created automatically though a clustering procedure, or they may be based
on demographic variables. Independent classifiers are each trained on data from sub-
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Figure 3.43: Confusion matrix for the champion representation.

jects in a single cohort. Material to be classified can be identified as belonging to a
subject in a particular cohort and passed to the appropriate classifier. Alternatively,
all classifiers can be run in parallel and the results combined through a decision rule.

[ have examined subject cohort distinctions based on gender or writing hand. In
both cases, subjects were assigned to one of two cohorts dependent on their responses
to questions posed as part of data collection. The classifiers were evaluated under
matched (training and testing cohorts agree) and crossed (training and testing cohorts
disagree) conditions. The results of these studies are shown in Table 3.2. In both
cases, relying on a larger but less homogeneous pool of training data provided the
highest accuracy. Writing from females consistently scored higher than did writing

from males, even in the cross-testing case.

3.5.3 Perturbation Training

The accuracy of the champion representation tested on the training set is 88.7%.
The large disparity between the training and testing set results suggests that the
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Figure 3.44: Cumulative accuracy for the champion representation.

Training Testing Cohort Training Testing Cohort
Cohort | Male | Female | Both Cohort | Right | Left | Both
Male | 71.7% 77.7% | 74.5% Right 75.8% | 74.9% | 75.7%
Female |68.9% | 78.8% | 73.5% Left 64.7% | 74.1% | 65.9%
Both | 73.8% 81.1% | 77.2% Both 76.6% | 81.5% | 77.2%

Table 3.2: Classification based on subject cohorts dependent on gender (left) and
writing hand (right).
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classifier is not sufficiently generalized to cover unseen phenomena. One technique to
improve this situation is to train the system on additional data. Unfortunately, more
data may be difficult or impossible to obtain. Is there a way to extract greater utility

from the existing training set?

The purpose of additional training material is to capture more of the variability
observed in a test set. In some cases, this variability can be characterized analytically.
For example, the size of a character can be represented as a scale factor. When this
is possible, existing training material can be manipulated to approximate the unseen
variability [5, 11]. In general this technique will give the best approximation when
the manipulations are restricted to minor perturbations. However, one can imagine
an extreme case of a classifier trained on a single token for each label, but with those

exemplars manipulated along many dimensions to mimic test data.

I have chosen to explore character rotation as a potential application of per-
turbation training, but deformations varying character aspect ratio or sample point
locations are also promising. Since the data collected was all at the same orientation,
rotational variability was introduced primarily by writing slant. However, the same
technique could be applied over a wider range of rotations to produce an orientation-

independent classifier.

Each token in the training set was rotated clockwise and counterclockwise by a
fixed step size to produce new training tokens. This procedure was repeated until
a maximum rotation was reached. The original training token was retained. The
experiment was conducted under different conditions of step size and rotation limit.
In all but one case, as seen in Table 3.3, the character classification improved. In the
best case the classification rate reached 79.1%. For those perturbation conditions,
the performance on training data (including the rotated tokens) also increased to
91.4%. Perturbation of mainstream data has helped to cover outlier tokens. But
changes to the outliers have pushed them even farther afield. Apparently, errors on
newly formed outliers were spread over a wider pool of data, yielding the improved

performance seen.
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Table 3.3: Character classification accuracy for the champion representation based
on various perturbations of the training set.

3.6 Summary

In this chapter I have examined many handwriting representations within the
framework of character classification. I began by establishing human character classi-
fication performance for the test data. Next I examined static representations based
on character images. A bitmap of each character, a representation akin to writing on
a page, gave reasonable classification accuracy. However, representing the image with
multiple projections yielded better performance. I showed how dynamic information
could be incorporated in character images, but found that this improved performance
only for the lowest resolution, most confusable images. In considering dynamic rep-
resentations, the best performance was given by a simple representation based on the
Cartesian coordinates of ten equally spaced points along the pen’s trajectory, yield-
ing a 20-dimensional feature vector. Adding to or manipulating this representation
failed to improve its performance. The results of these experiments are summarized
in Figure 3.45. The best representations incorporated dynamic information, but some
static representations were close behind. None of the representations could achieve
the accuracy of human authenticators using a static representation.

Having identified the highest-performing character representation, I showed how
its performance could be improved further through tuning its parameters. Using the
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Figure 3.45: Character classification accuracies for the representations examined in
this study.

best parameters for the best representation yielded a classifier with 77.2% top-choice
accuracy and 90.1% top-2 accuracy. Finally, I showed how additional gains could be
realized by perturbing the training data to better account for test set variability. The

best top-choice accuracy achieved with this technique was 79.1%.
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Chapter 4

Recognizer Development and
Evaluation

It would be wrong to assume that the character classification results reported in
the previous chapter accurately represent the performance expected of a handwriting
recognition system. For classification, the writing corresponding to each character was
identified by a near error-free hand transcription. This contrasts with a recognition
system, in which the input is divided into regions by an automatic segmentation
algorithm. The segmenter can make errors, inserting boundaries where none are
necessary and omitting them where they are required. Even when boundaries are
placed only at plausible positions, the correct segmentation can be ambiguous in
the absence of higher-level knowledge, as shown in Figure 4.1. The classification
component of the recognizer must also contend with partial and merged characters.
These effects can introduce confusions unseen in classification experiments.

In this chapter I describe the construction of a recognition framework to test the
best handwriting representation found for classification. The bulk of this work was in
creating an automatic segmentation algorithm appropriate for the handprinted data
of the corpus. To do so required characterizing the properties of the data which may

indicate symbol boundaries.

4.1 Experimental Procedure

There are many approaches that could be pursued in creating a handwriting rec-

ognizer; again there is much optimization to be performed to obtain the highest
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Figure 4.1: Context can determine if a shape is more likely to be interpreted as one
or two characters, illustrated by exchanging handwriting between examples from the
corpus.

performance possible. I have foregone most of this tuning and instead created a rea-
sonable yet easily reproducible system. Because I view this work as only a starting
point, it is important that others be able to closely duplicate my experiments to

ensure their results are commensurable.

4.1.1 Ensuring Comparability

As with my classification experiments, I depended on existing technology to carry
out these studies. The segmentation and feature extraction were particular to the
handwriting problem, but the classification and search components were taken from
the suMmIT [93] speech recognizer. This classifier, with the appropriate controlling
parameters, was identical to the one used for the classification experiments. The
secarch phase allowed for probabilities assigned to each boundary to influence the
selection among alternate segmentation paths.

I made other decisions to facilitate meaningful comparisons between classification
and recognition experiments. This included using identical training and development
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sets. In some cases maintaining comparability compromised the performance of the
recognizer. Although neighboring symbols can influence a character’s shape, context-
independent models were used to better match the classification experiments’ condi-
tions. Similarly, language modeling can boost the accuracy of a system by penalizing
responses with unlikely character strings. Character frequencies were captured when
training the classifier, but higher-order statistics were not used for the bulk of my
experiments. When they were incorporated it was only to determine the additional
constraints they provided.

In classification studies based on hand-marked character boundaries one is free
to ignore selected segments. However, a recognizer must contend with the entire
handwriting stream. In my classification studies I discarded ink corresponding to pen
skips and ligatures. For recognition I generally modeled these phenomena explicitly,
treating them as additional characters in the alphabet. These symbols would not be

seen by the writer and so were ignored in scoring the results.

4.1.2 Recognizer Construction

To accurately determine the effects of algorithmic differences, a single character
representation should be selected for all studies. Because the recognition experiments
were concurrent with the classification studies, the best representation was not iden-
tified in time to be used for system development. Instead, I selected 8 x 8 bitmaps
as simple, competitive, and uncontroversial.

Ideally a recognizer could combine probabilities generated by its components to
determine the relative worth of alternate results. The simplifying assumptions made
in building actual recognizers distort probability estimates. For example, sequential
tokens are often treated as statistically independent despite our knowledge to the
contrary. Handling the component scores as if they were true probabilities is not
guaranteed to identify the most likely result. Although they are unnecessary in theory,
adjustment factors are required for a system to achieve the best performance. These
controls weight the various sources of information and bias the results to contain more
or fewer segments. An initial set of parameter values was selected to obtain the highest
accuracy for a recognizer trained and tested on only a subset of the available data.
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For each experiment, these parameters were reestimated iteratively to balance the
number of insertion and deletion errors. At each iteration, the character models were
retrained with data from the most likely correct segments to account for differences
from the hand transcription.

The result of recognizing a handwriting sample is the highest-scoring character
string. This string is evaluated by checking it against the transcription of the data.
For classification this comparison is easy because cach string contains exactly one
character. However, with recognition the correct and hypothesized label strings may
differ in length; a correlation between the two must be constructed before they can
be compared. This was accomplished with a public domain program developed by
NIST [57] for evaluating speech recognizers. It uses dynamic programming [64] to
determine the best alignment between word strings and reports on insertion, deletion,
and substitution errors. To adapt this to my recognition task, each character was

treated as a separate word.

4.1.3 Segmentation Approach

There are many ways to automatically segment handwriting. At one extreme an
exhaustive list of all possible segmentations may be proposed. Alternatively, one can
avoid segmentation altogether by choosing a recognition strategy which implicitly
divides the input. I chose an intermediate position, inserting boundaries to create
character-sized segments.

The correctness of a segmentation can be evaluated by comparing its boundaries
with those of a hand transcription. Some latitude in boundary position may be ac-
ceptable in lieu of an exact match. Because the speech signal is 1-dimensional, a time
difference between corresponding boundaries is an effective measure of segmentation
accuracy. The 2-dimensional nature of handwriting makes for a more difficult com-
parison. Characters may touch or overlap, situations inapplicable to speech. The
third dimension added for on-line handwriting further complicates matters. In some
cases, such as latent “t” crossing, small spatial differences can be widely separated in
time while small temporal differences can be widely separated in space.

While a segmentation similar to the transcription should be adequate for recog-
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nition, other divisions of the input can result in equally high performance. For this
reason | elected to avoid the difficulties of comparing boundary positions by evaluating
segmentation schemes in the context of recognition. That is, different segmentation
algorithms were applied to otherwise identical recognizers.

Handwriting is an inherently multi-dimensional process, but the text it encodes
is 1-dimensional. At some point in any handwriting recognizer the temporal signal
must be mapped into a symbol stream. As with other operations, it is desirable to
delay firm segmentation decisions as long as possible to bring as much information
to bear on the problem. This suggests waiting until the search phase to find a linear
path through the 2-dimensional image space. However, this would preclude using the
search procedures developed for speech recognition.

The alternative is to treat handwriting as a 1-dimensional signal. There are several
ways this can be accomplished. The signal could be recognized in temporal order,
perhaps splitting characters into multiple symbols to allow for retrograde crossing
and dotting. This output could be converted to words using an appropriate lexicon,
or arbitrary character strings could be accepted by reordering the output symbols.
The signal could also be recognized in temporal order after retrograde strokes are
noted and removed. For example, the data associated with the stem of a “t” could
be marked with a special designation indicating spatial overlap with data from a
retrograde cross stroke. Even with that cross discarded, sufficient information is
available to classify the vertical bar correctly rather than as the otherwise confusable
«

Both of these techniques require special processing which makes character recog-
nition less like the classification problem. The approach I selected better retained
the comparability, permitted a linear segmentation, and was readily implemented.
Strokes in the input were sorted based on the horizontal position of their centers.
The motivation for this was derived from the 3 strokes used to form a “tt” sequence
with a common cross stroke. To best match the prototype shape of each “t,” the
cross needs to be split between the two symbols and so should be ordered between
the two stems.

All of my segmentation algorithms depended on having access to the writing in
its entirety. Prior to segmentation the handwriting strokes were sorted according to
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their position. Spatially adjacent strokes could then be grouped and divided into

character-sized segments, forming a directed acyclic graph.

4.1.4 Summary

The handwriting recognition experiments I performed were based on a segmental
speech recognizer. The bulk of the work required to construct the system was in
developing the segmentation algorithm. To avoid the difficult and perhaps inappro-
priate problem of evaluating a segmenter’s accuracy, the performance of recognizers
incorporating alternate segmentation algorithms were compared. For this comparison
to be meaningful, other factors affecting recognition had to be held constant. These
experiments were based on an 8 X 8 bitmap image representation with other options

sclected to ensure comparability with the classification experiments.

4.2 Segmenting at Pen-Lifts

Segmentation is the first step in recognizing handwriting. In the formalism I
have adopted, additional segments cannot be proposed in later stages of processing.
Accordingly, an algorithm which over-generates, producing spurious segments in ad-
dition to the “correct” omes, is favored over one which under-generates and misses

needed regions.

A distinguishing characteristic of hand printing is that symbols are generally iso-
lated from one another. It makes sense to exploit this property in creating a seg-
mentation algorithm. For on-line data, this is best manifested as a pen-up between

characters. A benefit of this cue is that it allows for spatial overlap between symbols.

How often were character boundaries coincident with pen-lifts? This was deter-
mined using the hand-aligned transcriptions. Each pair of neighboring characters was
extracted from the training data. If the characters had no strokes in common, a pen-
lift must have been present between them. Using this criterion, 98.4% of the character
boundaries corresponded to pen-lifts, confirming the prevalence of this attribute.
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Figure 4.2: Number of strokes per character for the training set data.

4.2.1 Uniform Boundary Probability

While pen-lifts served as a powerful indication of character boundaries, they were
also present internal to characters constructed from multiple strokes. Simply pro-
ducing one segment per stroke was insufficient for matching character boundaries;
segments including multiple strokes had to be hypothesized. Each stroke could be
assigned to more than one segment and any overlap would be dealt with in the search
phase.

Examining transcription tokens from the training data, statistics were collected
on the number of strokes per character. These are shown in Figure 4.2. No character
observed is constructed from more than four strokes. Single stroke characters are
the most common and are three orders of magnitude more frequent than four stroke
characters.

A straightforward way to account for the range in strokes per character is to
propose segments for all combinations of 1 to n neighboring strokes. The likely limit
is n = 4, but I considered values of n from 1 to 6. A uniform probability of 75.8%
was assigned to each boundary created. This value is the fraction of pen-lifts that
occur between, rather than within, characters. The approach depended solely on
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Strokes per Performance
Segment | Correct | Insertions | Deletions
1 44.6% 17.2% 7.6%
1,2 51.3% 16.3% 3.6%
1-3 52.2% 14.6% 4.0%
1-4 50.9% 13.7% 4.2%
1-5 50.7% 13.7% 4.6%
1-6 50.8% 13.2% 4.7%

Table 4.1: Character recognition performance for segments constructed from varying
number of strokes and with uniform boundary probability.

poor classifier scores to weed-out incorrect segments. The results of this experiment
are shown in Table 4.1. As might be expected, creating segments from more than
four strokes did not provide the best performance. Interestingly, the most correct
characters were recognized when segments were limited to only three strokes. Some
insight into why this was so can be gained from the surprisingly high effectiveness
of allowing only a single stroke per segment. Not only did this model the bulk of
the data, multi-stroke characters could often be identified from less than their full
complement of strokes. For comparison purposes, character classification based on an

8 x 8 bitmap representation correctly identified 60.7% of the symbols.

4.2.2 Classifying Pen-Lifts

The uniform boundary probability incorporated in these experiments was simple
to compute but not particularly helpful in determining the best segmentation. If
there is a property which can better predict the likelihood of a boundary it can be
exploited to improve the system’s accuracy.

Note that at character boundaries one expects the pen to move horizontally since
English is written from left to right. At each pen-lift the direction traveled from
pen-up to pen-down was computed. A histogram of these directions, extracted from
the training data, is shown in Figure 4.3. Indeed, the pen did tend toward the
right between characters, typically with an upward or downward component as well.
Within characters the pen-lifts tended toward up and to the left, with some traveling
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Figure 4.3: Histogram of pen travel directions at potential boundaries.

rightward and even fewer downward. Although there was some overlap between these
two categories, this simple property provided remarkably clean separation between

the distributions.

In order to incorporate this source of information in the segmenter, I constructed
a non-parametric model to estimate the probability of a character boundary given
the pen-lift’s travel direction. The non-parametric model divided the training data
by angle into equally spaced bins. The frequency of data within each bin was used to
estimate the probabilities. The number of bins in the model was selected to provide
the best classification performance on development data. In addition, a half bin width
offset was considered to determine the sensitivity to angle quantization. The results
of this optimization are shown in Figure 4.4. Using 18 bins and no offset, 92.5% of

the pen-lifts were correctly classified as between- or within-characters.

To test the effects of this information source, segments were constructed as before

from all possible combinations of one through four neighboring strokes. However,
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Figure 4.4: Optimizing bin count and offset for non-parametric modeling of pen travel
directions at potential boundaries.

in this experiment the probability of each boundary was given by the classifier. In
Table 4.2 this approach is compared to using a uniform boundary probability. Not
only did the fraction of characters correctly identified increase, both insertion and
deletion errors were reduced. In fact, these results were better than for any uniform

probability case examined.

4.3 Segmenting Connected Characters

I next turned to segmenting connected characters. Since these are characterized
by having some stroke in common, this problem can be decomposed into identify-
ing shared strokes followed by selecting boundaries within these strokes. A viable
alternative to segmenting joined characters is modeling the more frequent connected
strings as symbol-like units of their own.

An important observation about connected characters is that they are rare. Fig-
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Boundary Performance

Probability | Correct | Insertions | Deletions
Uniform 50.9% 13.7% 4.2%
Predicted 54.3% 11.7% 3.6%

Table 4.2: Character recognition performance using uniform and predicted boundary
probability.

11 Iil!
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Figure 4.5: Frequency of connected character strings in the training set.

ure 4.5 shows the frequency of connected character strings as a function of their
length. Not only are connected characters rare in handprinting, sequences of more
than two connected characters are extremely rare.!

Accordingly, I decided to focus on connected pairs of characters only. These are
not distributed uniformly. The most common connected character pairs are shown
in Table 4.3, listing both their count in the training set and the fraction of those
characters which are connected. A joined “ti” forms the most frequent connected
pair, but less than one-fifth of the potential connections are realized. Although less
frequent, over two-fifths of the “tt” sequences were connected. As can be seen in the

examples, a particular pair can have several different written forms.

! This statistic is biased by the fact that data were rejected from subjects who scemed to rely on
cursive writing.
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i | 227 | 195
t | 65 | 44.8
fo | 62 | 24.1
er 54 | 241
ng 51 2.6
fi | 47 | 149

= S|

ﬁdQ#if“
T%Q@ii—.éz

Table 4.3: The most common connected character pairs in the training set.

4.3.1 Splitting Strokes

Identifying and splitting the strokes shared between character pairs is a difficult
problem due to their variety, demonstrated in Figure 4.6. In some cases the ligature
includes only a part of each character. In other cases, both characters are constructed
in their entirety from a single stroke. The connecting stroke can be straight, gently
curved, or sharply bent.

Characters are generally written in sequence, left to right, regardless of their being
connected or not. As a result, strokes which connect characters should finish to the
right of where they started. A histogram showing stroke direction, computed from
the starting and ending points, is shown in Figure 4.7. Strokes connecting characters
do tend to progress down and toward the right. Unfortunately, so do many strokes
within single characters. Worse, connecting strokes are two orders of magnitude less
frequent than the others. A parametric model was constructed and optimized just
as described before, but the wide difference in frequency precluded any strokes from
being identified as connecting. Rather than correct classification, the optimization
criteria was changed to maximizing the probability assigned to connecting strokes.

The variety in shared strokes also poses a problem for identifying segmentation
points. I decided on a simple approach, segmenting strokes at two fixed positions.
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Figure 4.8: Histogram of boundary locations along connecting strokes.

Providing two boundaries gave added flexibility to the segmentation: one or both
could be ignored in the search phase. This permitted the central region to serve as a
ligature if needed and allowed the better single boundary to prevail when all of the

stroke was used in forming characters.

A boundary’s location within a stroke can be specified as a fraction of the distance
from pen-down to pen-up. A histogram of these distances, extracted from the training
data, is plotted in Figure 4.8. The mean for this data is very close to the half-way
position. The one-third and two-thirds positions lie approximately one standard

deviation from the mean, providing convenient points for inserting boundaries.

The final segmentation procedure was as follows. Strokes with non-zero probabil-
ity of being shared were divided into three equal-length sub-strokes. The undivided
stroke was retained as well. Then, all combinations of one to four adjacent strokes and
sub-strokes were proposed as segments. The probability of a boundary at a pen-lift
was given by the classifier described in the previous experiment. The probability of
boundaries within a stroke was one-half the probability that the stroke was shared.
Table 4.4 shows the performance of a recognizer incorporating this segmentation. At
best, limited improvement over the previous system can be expected because con-
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Performance
Segmentation Correct | Insertions | Deletions
Pen-lifts Only 54.3% 11.7% 3.6%
Add Stroke Splitting 54.7% 7.8% 4.4%

Table 4.4: Character recognition performance when segmenting at pen-lifts only and
when including boundaries within possible connecting strokes.

Performance
Representation | Correct | Insertions | Deletions
8 x 8 Bitmap 54.7% 7.8% 4.4%
Champion 65.1% 9.1% 3.7%

Table 4.5: Character recognition performance using two writing representations.

nected characters are so rare. Splitting strokes gave a modest gain in the fraction
of characters recognized correctly. The number of insertions was reduced while the

number of deletions increased.

4.4 Variations

The recognition experiments described so far were all based on an 8 x 8 bitmap
representation. The champion representation, Cartesian coordinates of ten equally
spaced samples within each character, yielded the best classification performance of
any representation tested. Using this representation for recognition should provide
similar performance gains. The results of doing so are shown in Table 4.5. Changing
representations reduced the error rate by 23% while maintaining comparable insertion
and deletion rates. For comparison, classification using this representation correctly
identified 77.2% of the symbols. The remaining recognition experiments were all
based on the champion representation.

The recognition alphabet included symbols for pen skips and ligatures. These sym-
bols were not counted in evaluating recognition performance, but they undoubtably
had an indirect influence. An alternative was to omit these regions altogether. Char-

acter models were seeded from the hand transcription as before. In retraining the
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Character Performance
Set Correct | Insertions | Deletions
Alphanumeric + Specials 65.1% 9.1% 3.7%
Alphanumeric 67.4% 8.3% 2.7%

Table 4.6: Character recognition performance using two alphabets. Special characters
represent pen skips and ligatures.

recognizer, the extraneous ink will be assigned to one or both of the neighboring
symbols and incorporated in those character’s models. The results of this experiment
arc shown in Table 4.6. This simple change gave a small increase in accuracy. Either
the pen skips and ligatures could not be classified reliably as independent units or

their incorporation in character models helps clarify symbol variability.

Explicit contextual constraints, in the form of a language model, can also im-
prove recognition performance. The classifier used in these experiments models the
frequency of each character, and even each character’s allographs. To determine the
potential power of higher-order statistics, a bigram grammar can be applied to the
search phase of recognition. The constraining power of this grammar is derived from
restrictions on spelling patterns, the structure of upper- and lower-case letters within

words, and the high mutual exclusivity of letters and digits within a particular string.

The grammar was constructed from over 14-million words and numbers containing
over 65-million characters from the New York Times newswire data described on
page 44. All punctuation was discarded, but capitalization was retained. Special
symbols were used to indicate string start and end. Character pairs which were not
observed were assigned a frequency of 1 to make all letter sequences permissible.
Because the text analyzed is large and quite general, one would expect the resulting
grammar to provide relatively weak constraints.

One measure of a grammar’s constraining power is its perplexity [34], roughly de-
fined as the average branching factor. The perplexity of a bigram character grammar

may be computed as

(~ > P(er, ¢2) logy Ples cl))
2 C1,C2
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Character Performance
Grammar | Perplexity | Correct | Insertions | Deletions
Unigram 36.0 67.4% 8.3% 2.7%
Bigram 11:3 76.4% 7.6% 2.1%

Table 4.7:

mar.

Character recognition performance incorporating a bigram character gram-

where ¢; and ¢, are characters from the alphabet in consecutive positions. Even this
loose grammar has a perplexity of only 11.3, slightly more than half the perplexity
considering only unigram statistics (20.0) and far less than the perplexity of uniformly
distributed characters (63.0). The unigram perplexity is so low because lower-case
symbols are much more common than other characters. For comparison, the bigram
perplexity computed over training set transcriptions is 8.6 and the corresponding
unigram perplexity is 36.0. The results of applying the bigram to the recognition
process are shown in Table 4.7. Despite the broad task modeled, a 27% reduction in
error rate was achieved. More limiting grammars (for example, constraining results

to words in a lexicon) should yield even better performance.

4.5 Summary

In this chapter I have developed a handwriting recognizer using classification and
search components from a segment-based speech recognition system. The classifica-
tion component was identical to that used in my classification experiments, allowing
the effects of automatic segmentation to be observed.

Most of the experiments I conducted were related to segmenting the handwriting
into character-like regions. In all cases, multiple segmentatioﬂs were proposed for
each input. I have shown the effectiveness of segmenting handprinted data at pen-
lifts. This technique was improved by estimating the probability of each boundary
based on the direction of pen travel between strokes. I have shown that connected
characters are relatively rare yet pose difficult challenges for segmentation. Still, a
simple approach of identifying potential shared strokes and splitting them at fixed
locations along their trajectory was able to improve system performance.
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Having selected a segmentation scheme, the performance of the recognizer could
be increased by using an improved representation. Additional gains were realized by
allowing character models to incorporate neighboring pen skips and ligatures. Finally,
I showed how incorporating even a loose bigram grammar can substantially improve

recognition results.
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Chapter 5

Summary and Future Directions

5.1 Summary

In this thesis I have presented a comprehensive series of experiments aimed at a
better understanding of automatic handwriting recognition for on-line printed text.
This included designing, collecting, and transcribing a suitable corpus of handwrit-
ing data; running human authentication experiments to determine the difficulty of
character classification; comparing handwriting representations through automatic
classification; and constructing a recognition system to observe the effects of auto-
matic segmentation. Rather than searching for a high-accuracy system, my goal was
to report on the performance of incremental experiments as a basis for additional
studies.

The handwriting corpus developed for my studies incorporates several novel fea-
tures. Its design is based on a set of variable length character sequences identified
by an information theoretic metric. These sequences, and others chosen for their
research interest, were covered by words selected automatically to achieve compact
coverage. Handwriting was recorded from many subjects to validate my results for
writer-independent systems. A minimum of influences on this writing was achieved by
a large writing area, few instructions, and aural prompting. The handwriting corpus
was transcribed and the data aligned with the transcriptions.

Handwriting data can have a wide range of consistency and confusability. To bet-
ter understand the difficulty of the task at hand, I ran an authentication experiment
on the training portion of my handwriting corpus. Mimicking the conditions of char-
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acter classification, individual characters were excised using the aligned transcriptions
and presented to authenticators in random order. Nearly 1 out of 5 characters were
misidentified under these circumstances.

The classification studies I conducted were based on a single, flexible classifier.
Experiments were designed to provide a meaningful comparison between various rep-
resentations and all characters were normalized to ensure position and scale inde-
pendence. In theory, making additional information available to the classifier should
improve accuracy. However, I found that these gains were often offset by the perfor-
mance reduction of additional classifier complexity. Incorporating dynamic informa-
tion available from on-line data was not always beneficial. Nonetheless, some of the
better representations observed did profit from this information. The best representa-
tion found was simple: a 20-dimensional vector containing the Cartesian coordinates
of 10 equally spaced points along the pen trajectory. By making small perturbations
to the training data, the classification accuracy could be improved further.

To construct a complete handwriting recognizer, I relied on the classification and
search components of a speech recognition system. In segmenting the data, I showed
how a boundary classifier based on pen travel could improve performance. I demon-
strated that connected characters pose a significant challenge to segmentation and

proposed a simple solution which improved recognition accuracy further.

5.1.1 Evaluation Results

I have saved reporting on a final set of experiments for the very end of this docu-
ment. All of the experiments [ have described so far were based on the training and
development sets. The evaluation set has been excluded from all studies to prevent
any tuning to its data. Maintaining an unseen data set for testing is required to truly
evaluate system performance. Purely for comparison purposes with future studies, I
now present sclected systems tested on the evaluation data.

For each of these experiments I consider two training conditions. In one approach,
the designated training set is used just as it has been in previously described exper-
iments. Only the test data is different, allowing for a fair comparison between the
two testing conditions. In the other approach the development set is used for train-
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Training Data Testing Data | Tokens Correct

Training Set Development Set 77.2%
Training Set Evaluation Set 81.0%
De?rz?ci)lpﬁriininge e Evaluation Set 79.9%
Au Ll?(lz:i?iizion Development Set 81.7%
o tﬁ;il'iiz;tion Evaluation Set 84.1%

Table 5.1: Character classification performance based on the evaluation data.

ing as well. This gives a glimpse of how additional training data may affect system
performance. Only the champion representation was applied in these studies.

The results for character classification are summarized in Table 5.1. The somewhat
higher accuracy achieved by training on perturbed data is not shown. In comparing
classification results across test sets, evaluation data gave the better results. A sim-
ilar difference was observed in the authentication studies. Interestingly, additional
training data lowered system accuracy somewhat. These two facts suggest that some
part of the development set is particularly difficult to classify, perhaps because in
some respect it is unlike the remainder of the data. This explanation is reinforced by

the poor classification accuracy for some subjects’ data, as reported on page 84.

Similar experiments were conducted for character recognition. Tests were run
without and with a character bigram grammar. Neither case included explicit regions
for pen skips and ligatures. The results from these studies are shown in Table 5.2.
The pattern of improved accuracy on the evaluation set is repeated here. Unlike
for classification, additional training data from the development set had a positive

impact on recognition performance.

[t is impossible to make a direct comparison between these performance figures
and system performance described in the literature. Certainly, others have claimed
higher accuracies. However, the relative difficulty of the task must be considered in
making a qualitative evaluation. Given that my work was based on a character set
with highly confusable symbols, that handwriting was collected in a relatively uncon-
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Without Bigram Grammar
Performance
Training Data Testing Data | Correct | Insertions | Deletions
Training Set Development Set 67.4% 8.3% 2.7%
Training Set Evaluation Set 71.7% 6.8% 3.0%
Lraiing anc} Evaluation Set 74.4% 4.7% 2.9%
Development Sets
With Bigram Grammar
Performance
Training Data Testing Data | Correct | Insertions | Deletions
Training Set Development Set 76.4% 7.6% 2.1%
Training Set Evaluation Set 79.3% 5.6% 2.1%
“AiRg sus Evaluation Set 82.7% 3.2% 2.4%
Development Sets

Table 5.2: Character recognition performance based on the evaluation data.

strained manner from a large number of subjects, and that testing was performed on
an independent data set without the benefit of high-level constraints, I feel that the

performance I have reported is at least comparable to earlier results.

5.2 Future Directions

There are many possible ways this work could be continued. In fact, it is my hope
that the corpus I collected will be made available to other researchers. Parts of this
document serve to eliminate replication of the basic studies which should be common
to all recognition experiments performed with this handwriting data.

5.2.1 Optimization

Performance could drive many extensions to my studies. For example, the con-
current optimization of all system aspects is likely to result in the highest recognition
accuracy. Due to time limitations, the systems I developed are far from optimum.
If nothing more, the parameters controlling classification and search could be better

tuned to the chosen representation.
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More powerful modeling techniques should also result in higher accuracy. Better
language models, perhaps driven by a particular application, would place tighter con-
straints on the search space. At the character level, context dependent models would
account for more of the data’s variability. Various subject-dependent constraints
could be modeled explicitly, perhaps to the extent of creating adaptive systems. Ad-
ditional contextual information could be incorporated to capture relative character
size and placement.

Performance gains can also be achieved by relaxing some of the assumptions I
have made in system development. This requires scrutinizing each experiment and
testing the obvious. For example, describing the best representation found as “the
Cartesian coordinates of 10 equally spaced points” should raise many questions I
have not addressed. I have shown that equally spaced sampling was somewhat better
than equally timed samples, but perhaps some other spacing criteria would yield
better performance. One can imagine sampling 100 equally spaced points from each
character. Through an optimization procedure, a subset of these points could be
selected to achieve the highest classification performance. The result could be a small
number of unequally spaced samples.

Similarly, such an optimization might discard some of the position components
from some samples. The completeness of taking two coordinates from all points may
be appealing, but higher accuracy might result from extracting only = coordinates
from some points and only y coordinates from others. This optimization can also
be applied after principal component analysis. A search for the best components is
required rather than a simple truncation. Earlier components capture the greater
variances in the data, but this is not equivalent to providing the best dimensions
for discrimination. More formally, some type of discriminant analysis [15] may prove
beneficial.

Additional work could be task driven. Many applications of handwriting recogni-
tion will involve highly portable systems. These systems can be characterized as hav-
ing limited memory and processing capability to conserve space, weight, and power.
The demand for efficient algorithms is amplified by a desire for real time systems.
None of my studies have addressed the trade-off between computational requirements
and system accuracy.
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Finally, additional training data can improve the performance of almost any clas-

sification or recognition system.

5.2.2 New Areas

The studies I have conducted could also be extended in ways that are more than
simple refinements. For example, there are an unlimited number of representations
one might consider. Alternate segmentation approaches, particularly ones which bet-
ter handle connected characters, are another fertile area of study. I have already
mentioned the possibility of searching a 2-dimensional segment graph. Another al-
ternative is an exhaustive segmentation which encompasses all contiguous point se-
quences.

I have completely ignored commonly applied preprocessing techniques for hand-
writing. To establish robust techniques, features such as character baselines should
be hand marked in the data. These would be used to develop and test normaliza-
tion procedures. Traditional goals such as rotating baselines to the horizontal are
secondary to providing some consistent end product. For example, a principal com-
ponent analysis of data points might transform data consistently but distort writing
from a visual standpoint. Ultimately, it is the effect of these manipulations on recog-
nition performance that must be measured.

Additional data could supply handwriting needed to extend the domain of the
recognition task. For example, I collected boxed character data but gave it only a
cursory examination. The subjects supplying data for my studies were directed to
print their responses. By changing or eliminating this instruction, the very same
procedures I developed could be applied to collecting cursive or mixed writing styles.
The character set could be extended as well. One possibility is to include more of the
punctuation and symbols found on keyboards. Another is to include the diacritics
rarely used in English texts but important for foreign proper nouns and some bor-
rowed words. Handling word, line, and paragraph breaks will be important for many
applications.

To successfully deploy handwriting recognition systems in real applications, stud-
ies of additional areas are needed. For example, thinking of the writing process as
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inscribing characters sequentially simplifies automatic processing. However, a range
of spontaneous production phenomena do not fit this model. Cross-outs, insertions,
restarting, and overwriting are some of the ways errors can be corrected within the
non-linear writing stream. Better systems will be able to interpret these indications
rather than requiring the subject to use artificial editing gestures.

The view of handwriting recognition I have worked with is purely automatic and
always returns a response. An alternative is to view the recognition process as a coop-
erative one between the writer and the recognizer. In this arrangement, the recognizer
may call on the user to clarify ambiguous input. This also serves to provide feed-
back to the user on writing clearly. Identifying ambiguity requires the development

of appropriate rejection criteria.

5.3 Parting Comments

I have proposed that recent advances in speech recognition system development
can be transferred to on-line handwriting recognition. This requires more than just
a sharing of technology: applying the correct methodology is vital. Systems must
be developed using large amounts of training data to be reliable. Writing has to be
collected under conditions matching actual usage to the degree possible. Care should
be taken to avoid unduly influencing the subjects. Only the most aberrant material
may be discarded. Test data needs to be disjoint from training data and cannot be
used for system tuning. Consistency is demanded between experiments to attribute
performance changes to individual factors. Incremental advances should be sought
in suggesting new avenues of study. All sources of constraint should be exploited.
Every aspect of a system requires justification, consideration, and optimization. The
obvious should not escape this scrutiny and even the absurd occasionally should be
evaluated. Finally, automatic methods can better cope with the volume of material
to be processed than can researcher-intensive tallying and estimation.

In my work I have strived to maintain these ideals as best as resources would
permit. While it is difficult, at present, to compare my results directly to existing
systems, I feel I have shown that competitive performance is possible using relatively
simple techniques. Furthermore, these results were achieved without fully tuning the
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recognition system. I expect somewhat better performance could be brought forth
with nothing more than better optimization of system control parameters. It is not
difficult to concoct simple corrections to some known deficiencies of the best system
described without resorting to the rule-based preprocessing techniques or representa-
tions so common in other handwriting recognition studies.

While my studies were all geared towards recognizing handwriting, by no means
do I view it as the perfect means of interacting with a computer. No single method
will be best for all users performing all chores. Handwriting will provide an additional
option. Even then, recognition is not necessary for all tasks. For example, recorded
handwriting is sufficient for note taking. In this context, accurate recognition may
be less important than algorithms to compress handwriting for storage and to match
handwriting for searching,.

Humans are extremely proficient at a variety of pattern recognition problems.
Recognizing speech and handwriting are so natural to us they seem easy at first
inspection. It is hard to say which of these tasks is more difficult, and it is not even
clear that a meaningful comparison can be made between them. However, both fields
offer rich areas of study that are likely to offer new research challenges for many years.
The uninformed are likely to dismiss instructing computers to perform speech and
handwriting recognition as simple. However, as one examines data the subtleties of
the problem are revealed. Rather than contempt, for these very difficult problems

familiarity breeds respect.
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